-
Zhonghua Gan Zang Bing Za Zhi · Jan 2020
[Texture analysis of diffusion-weighted magnetic resonance imaging to identify atypically enhanced small hepatocellular carcinoma and dysplastic nodules under the background of cirrhosis].
- X Zhong, J S Li, Z J Chen, J X Yin, S Gui, Z Q Sun, and H S Tang.
- Department of Radiology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China.
- Zhonghua Gan Zang Bing Za Zhi. 2020 Jan 20; 28 (1): 37-42.
AbstractObjective: To investigate the value of texture analysis based on diffusion-weighted magnetic resonance imaging (DWI) in the differential diagnosis of atypically enhanced small hepatocellular carcinoma (sHCC) and dysplastic nodules (DNs) in liver cirrhosis. Methods: Data of 59 cases with atypical enhancement and solitary cirrhotic nodule (≤2 cm) confirmed by dynamic contrast enhanced MRI and surgical pathology specimen were analyzed retrospectively. Among them, 37 cases were of atypically enhanced sHCC and 22 cases of DNS. The DWI signal characteristics of the lesions were analyzed to measure the average apparent diffusion coefficient (ADC) value of the lesions, and the ADC ratio of the lesion to the liver parenchyma. MaZda software was used to manually draw the region of interest to extract the texture parameters of DWI lesions. The three sets (combination of Fisher coefficient, classification of error probability combined with average correlation coefficient and interactive information) were used to select the thirty optimal texture parameters. Raw data analysis (RDA), principal component analysis (PCA), linear discriminant analysis (LDA) and non-linear discriminant analysis (NDA) were performed for texture classification. The difference of ADC value and ADC ratio between sHCC and DNS group was compared by independent sample t-test, and χ2 test was used to compare the count data (or rate). ROC curve analysis was used to evaluate the diagnostic efficiency. Results: The sensitivity, specificity and accuracy of DWI high-signal in the identification of atypically enhanced sHCC and DNs were 94.6% (35/37), 68.2% (15/22), and 84.7% (50/59), respectively. The ADC ratio of atypically enhanced sHCC was significantly lower than DNs, and the difference was statistically significant (t = 2.99, P = 0.002). The sensitivity, specificity, and accuracy for the diagnosis of atypically enhanced sHCC were 73.0% (27/37), 72.7% (16/22) and 72.9% (43/59), respectively. The sensitivity, specificity and accuracy of DWI texture analysis in diagnosing atypically enhanced sHCC were 94.6% (35/37), 95.5% (21/22) and 94.9% (56/59).The diagnostic efficiency of DWI texture analysis (AUC = 0.94) was significantly higher than DWI high-signal (AUC = 0.81) and ADC ratio (AUC = 0.72). Conclusion: The texture analysis based on DWI can identify atypically enhanced sHCC and dysplastic nodules under the background of cirrhosis, and its efficacy is better than qualitative and quantitative DWI.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.