-
Laryngoscope Investig Otolaryngol · Jun 2020
ReviewApplications of single-cell sequencing for the field of otolaryngology: A contemporary review.
- Madeline P Pyle and Michael Hoa.
- Division of Intramural Research, Section on Auditory Development and Restoration, National Institute on Deafness and Other Communication Disorders (NIDCD) Otolaryngology Surgeon-Scientist Program National Institutes of Health Bethesda Maryland USA.
- Laryngoscope Investig Otolaryngol. 2020 Jun 1; 5 (3): 404-431.
ObjectivesSingle-cell RNA sequencing (scRNA-Seq) is a new technique used to interrogate the transcriptome of individual cells within native tissues that have already resulted in key discoveries in auditory basic science research. Rapid advances in scRNA-Seq make it likely that it will soon be translated into clinical medicine. The goal of this review is to inspire the use of scRNA-Seq in otolaryngology by giving examples of how it can be applied to patient samples and how this information can be used clinically.MethodsStudies were selected based on the scientific quality and relevance to scRNA-Seq. In addition to mouse auditory system (inner ear including hair cells and supporting cells, spiral ganglion neurons, and inner ear organoids), recent studies using human primary cell samples are discussed. We also perform our own analysis on publicly available, published scRNA-Seq data from oral head and neck squamous cell carcinoma (HNSCC) samples to serve as an example of a clinically relevant application of scRNA-Seq.ResultsStudies focusing on patient tissues show that scRNA-Seq reveals tissue heterogeneity and rare-cell types responsible for disease pathogenesis. The heterogeneity detected by scRNA-Seq can result in both the identification of known or novel disease biomarkers and drug targets. Our analysis of HNSCC data gives an example for how otolaryngologists can use scRNA-Seq for clinical use.ConclusionsAlthough there are limitations to the translation of scRNA-Seq to the clinic, we show that its use in otolaryngology can give physicians insight into the tissue heterogeneity within their patient's diseased tissue giving them information on disease pathogenesis, novel disease biomarkers or druggable targets, and aid in selecting patient-specific drug cocktails.Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Laryngoscope Investigative Otolaryngology published by Wiley Periodicals, Inc. on behalf of The Triological Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.