• J Epidemiol Community Health · Apr 2020

    Individual and county-level variation in outcomes following non-fatal opioid-involved overdose.

    • Evan Marie Lowder, Joseph Amlung, and Bradley R Ray.
    • Criminology, Law and Society, George Mason University, Fairfax, Virginia, USA elowder@gmu.edu.
    • J Epidemiol Community Health. 2020 Apr 1; 74 (4): 369-376.

    BackgroundA lack of large-scale, individually linked data often has impeded efforts to disentangle individual-level variability in outcomes from area-level variability in studies of many diseases and conditions. This study investigated individual and county-level variability in outcomes following non-fatal overdose in a state-wide cohort of opioid overdose patients.MethodsParticipants were 24 031 patients treated by emergency medical services or an emergency department for opioid-involved overdose in Indiana between 2014 and 2017. Outcomes included repeat non-fatal overdose, fatal overdose and death. County-level predictors included sociodemographic, socioeconomic and treatment availability indicators. Individual-level predictors included age, race, sex and repeat non-fatal opioid-involved overdose. Multilevel models examined outcomes following non-fatal overdose as a function of patient and county characteristics.Results10.9% (n=2612) of patients had a repeat non-fatal overdose, 2.4% (n=580) died of drug overdose and 9.2% (n=2217) died overall. Patients with a repeat overdose were over three times more likely to die of drug-related causes (OR=3.68, 99.9% CI 2.62 to 5.17, p<0.001). County-level effects were limited primarily to treatment availability indicators. Higher rates of buprenorphine treatment providers were associated with lower rates of mortality (OR=0.82, 95% CI 0.68 to 0.97, p=0.024), but the opposite trend was found for naltrexone treatment providers (OR=1.20, 95% CI 1.03 to 1.39, p=0.021). Cross-level interactions showed higher rates of Black deaths relative to White deaths in counties with high rates of naltrexone providers (OR=1.73, 95% CI 1.09 to 2.73, p=0.019).ConclusionAlthough patient-level differences account for most variability in opioid-related outcomes, treatment availability may contribute to county-level differences, necessitating multifaceted approaches for the treatment and prevention of opioid abuse.© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…