-
- Chunhua Ma, Xueling Yang, Wenge Xing, Haipeng Yu, Tongguo Si, and Zhi Guo.
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Thorac Cancer. 2020 Mar 1; 11 (3): 588-593.
BackgroundEvaluating the molecular characteristics of brain metastases is limited by difficult access and by the blood-brain barrier, which prevents circulating tumor DNA (ctDNA) from entering the blood. In this study, we aimed to compare the sequencing results from cerebrospinal fluid (CSF) ctDNA versus plasma ctDNA, plasma circulating tumor cells (CTCs), and brain tissue specimens from patients with brain metastasis from non-small cell lung cancer (NSCLC).MethodsThis was a prospective study of 21 consecutive patients with NSCLC and brain metastasis diagnosed between April 2018 and January 2019. Samples of CSF and peripheral blood were obtained from all 21 patients. Brain tissues were obtained from five patients after surgical resection. Next-generation sequencing was performed using the Ion system. Single nucleotide variants (SNVs) and small insertions or deletions (indels) were searched.ResultsMutations were detected in the CSF ctDNA of 20 (95.2%) patients. The detection rate of epidermal growth factor receptor (EGFR) mutations in CSF ctDNA was 57.1% (12/21) whereas this rate was only 23.8% (5/21) in peripheral blood ctDNA and in CTCs. EGFR mutations were found in the CSF of 9 of 11 (81.8%) patients with leptomeningeal metastases, as compared with three of 10 (30%) patients with brain parenchymal metastases. Mutations were also detected in KIT, PIK3CA, TP53, SMAD4, ATM, SMARCB1, PTEN, FLT3, GNAS, STK11, MET, CTNNB1, APC, FBXW7, ERBB4, and KDR (all >10%). The status of EGFR and TP53 mutations was consistent between CSF ctDNA and brain lesion tissue in all five patients.ConclusionSequencing of CSF ctDNA revealed specific mutation patterns in driver genes among patients with NSCLC and brain metastasis.Key PointsIn some small-sample studies, the importance of cerebrospinal fluid in guiding the treatment of cancerous brain lesions has been verified in that it may reflect genomic mutations of brain tumors relatively accurately. Cerebrospinal fluid is a new form of liquid biopsy that can be helpful in improving the management of patients with brain metastasis from non-small cell lung cancer by detecting genetic abnormalities specific to brain metastases.© 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.