• JAMA pediatrics · Jun 2017

    Video Analysis of Factors Associated With Response Time to Physiologic Monitor Alarms in a Children's Hospital.

    • Christopher P Bonafide, A Russell Localio, John H Holmes, Vinay M Nadkarni, Shannon Stemler, Matthew MacMurchy, Miriam Zander, Kathryn E Roberts, Richard Lin, and Ron Keren.
    • Division of General Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania2Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia3Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania4Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia.
    • JAMA Pediatr. 2017 Jun 1; 171 (6): 524-531.

    ImportanceBedside monitor alarms alert nurses to life-threatening physiologic changes among patients, but the response times of nurses are slow.ObjectiveTo identify factors associated with physiologic monitor alarm response time.Design, Setting, And ParticipantsThis prospective cohort study used 551 hours of video-recorded care administered by 38 nurses to 100 children in a children's hospital medical unit between July 22, 2014, and November 11, 2015.ExposuresPatient, nurse, and alarm-level factors hypothesized to predict response time.Main Outcomes And MeasuresWe used multivariable accelerated failure-time models stratified by each nurse and adjusted for clustering within patients to evaluate associations between exposures and response time to alarms that occurred while the nurse was outside the room.ResultsThe study participants included 38 nurses, 100% (n = 38) of whom were white and 92% (n = 35) of whom were female, and 100 children, 51% (n = 51) of whom were male. The race/ethnicity of the child participants was 45% (n = 45) black or African American, 33% (n = 33) white, 4% (n = 4) Asian, and 18% (n = 18) other. Of 11 745 alarms among 100 children, 50 (0.5%) were actionable. The adjusted median response time among nurses was 10.4 minutes (95% CI, 5.0-15.8) and varied based on the following variables: if the patient was on complex care service (5.3 minutes [95% CI, 1.4-9.3] vs 11.1 minutes [95% CI, 5.6-16.6] among general pediatrics patients), whether family members were absent from the patient's bedside (6.3 minutes [95% CI, 2.2-10.4] vs 11.7 minutes [95% CI, 5.9-17.4] when family present), whether a nurse had less than 1 year of experience (4.4 minutes [95% CI, 3.4-5.5] vs 8.8 minutes [95% CI, 7.2-10.5] for nurses with 1 or more years of experience), if there was a 1 to 1 nursing assignment (3.5 minutes [95% CI, 1.3-5.7] vs 10.6 minutes [95% CI, 5.3-16.0] for nurses caring for 2 or more patients), if there were prior alarms requiring intervention (5.5 minutes [95% CI, 1.5-9.5] vs 10.7 minutes [5.2-16.2] for patients without intervention), and if there was a lethal arrhythmia alarm (1.2 minutes [95% CI, -0.6 to 2.9] vs 10.4 minutes [95% CI, 5.1-15.8] for alarms for other conditions). Each hour that elapsed during a nurse's shift was associated with a 15% longer response time (6.1 minutes [95% CI, 2.8-9.3] in hour 2 vs 14.1 minutes [95% CI, 6.4-21.7] in hour 8). The number of nonactionable alarms to which the nurse was exposed in the preceding 120 minutes was not associated with response time.Conclusions And RelevanceResponse time was associated with factors that likely represent the heuristics nurses use to assess whether an alarm represents a life-threatening condition. The nurse to patient ratio and physical and mental fatigue (measured by the number of hours into a shift) represent modifiable factors associated with response time. Chronic alarm fatigue resulting from long-term exposure to nonactionable alarms may be a more important determinant of response time than short-term exposure.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.