• J. Appl. Physiol. · Apr 1996

    Differential respiratory activity of four abdominal muscles in humans.

    • T Abe, N Kusuhara, N Yoshimura, T Tomita, and P A Easton.
    • Kitasato University, Kanagawa, Japan.
    • J. Appl. Physiol. 1996 Apr 1; 80 (4): 1379-89.

    AbstractTogether the abdominal muscles contribute significantly to ventilation under some conditions, but there is little information regarding individual recruitment and timing of activation of the four abdominal muscles in humans. Fine-wire electrodes were inserted under direct vision guided by high-resolution ultra-sound into the rectus abdominis (Rectus), external oblique (Extern), internal oblique (Intern), and transversus abdominis (Transv) in nine awake healthy subjects. Airflow, end-tidal CO2, and moving-average EMG signals were recorded during 1) supine resting and CO2-stimulated ventilation and 2) resting ventilation in the standing position. During resting supine breathing, Transv showed significant phasic EMG activity during expiration. As posture changed from supine to standing, phasic activity during resting ventilation was greatest in Transv, with lesser activity in Intern and Extern, while Rectus remained inactive. As CO2 began to increase, Transv was activated first, followed by Intern, the Extern, and finally Rectus. With moderate CO2 stimulation, Transv and Intern were more active than was Extern and Rectus remained least active. EMG activities in the expiratory muscles after cessation of expiratory flow (postexpiratory expiratory activity) and in expiratory muscle activity preceding expiratory flow were observed consistently during supine stimulated ventilation and standing resting ventilation. These activities before and after expiratory airflow were prominent with stimulated ventilation during a substantial portion of inspiration, suggesting dual control of inspiratory pump action by both inspiratory and expiratory muscles, which provide acceleration and braking actions, respectively. These results suggest that in awake humans 1) during resting ventilation, expiration is an active process; 2) abdominal muscles are activated differentially; 3) Transv is the most active, Intern and Extern are intermediate, and Rectus is the least active expiratory muscle; and 4) during stimulated ventilation, inspiratory and expiratory muscles contribute dually to inspiratory pump action.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…