• J R Army Med Corps · Jun 2014

    From model to molecules: the development and experimental manipulation of an in vivo contaminated extremity war wound.

    • Will G P Eardley and H C Guthrie.
    • Department of Orthopaedics, James Cook University Hospital, Middlesbrough, UK Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
    • J R Army Med Corps. 2014 Jun 1;160(2):183-6.

    AbstractWound infection is a key determinant of outcome in survivors of armed conflict. One factor having potential for promoting healing, decreasing bacterial burden and influencing prognosis is the dressing that covers the ballistic-injured extremity. Although antiseptic and silver dressings are applied to acute wounds, evidence to support their use is scarce with no controlled studies reported of antimicrobial wound dressings in extremity trauma. Given the recent burden of ballistic extremity injury, the requirement to investigate the role of antimicrobial dressings in contaminated wounds is transparent. This paper details a programme of work undertaken at the Defence Science and Technology Laboratory of developing and trialling a recovery model to investigate the early management of contaminated war wounds. A New Zealand White rabbit flexor carpi ulnaris muscle belly, isolated and then injured by a drop rig mechanism, was contaminated with Staphylococcus aureus to provide a reproducible contaminated muscle wound. This model was developed to support a series of randomised controlled trials to determine the impact of antimicrobial dressings on decreasing the bacterial burden of combat related extremity wounds. The results of the initial trial indicated that over a 48-h period, dressings augmented with antiseptic or silver offer no advantage over saline-soaked gauze in reducing the bacterial burden of a contaminated soft tissue injury. The model has subsequently been used to investigate the efficacy of dressings over a 7-day study period and impact of antibiotics and to evaluate biofilm formation and wound cytokines.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.