-
J Magn Reson Imaging · Mar 2016
Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI.
- Sara Orgiu, Claudio L Lafortuna, Fabio Rastelli, Marcello Cadioli, Andrea Falini, and Giovanna Rizzo.
- IBFM-CNR, Palazzo LITA, Milan, Italy.
- J Magn Reson Imaging. 2016 Mar 1; 43 (3): 601-10.
PurposeTo introduce and validate an automatic segmentation method for the discrimination of skeletal muscle (SM), and adipose tissue (AT) components (subcutaneous adipose tissue [SAT] and intermuscular adipose tissue [IMAT]) from T1-weighted (T1 -W) magnetic resonance imaging (MRI) images of the thigh.Materials And MethodsEighteen subjects underwent an MRI examination on a 1.5T Philips Achieva scanner. Acquisition was performed using a T1 -W sequence (TR = 550 msec, TE = 15 msec), pixel size between 0.81-1.28 mm, slice thickness of 6 mm. Bone, AT, and SM were discriminated using a fuzzy c-mean algorithm and morphologic operators. The muscle fascia that separates SAT from IMAT was detected by integrating a morphological-based segmentation with an active contour Snake. The method was validated on five young normal weight, five older normal weight, and five older obese females, comparing automatic with manual segmentations.ResultsWe reported good performance in the extraction of SM, AT, and bone in each subject typology (mean sensitivity above 96%, mean relative area difference of 1.8%, 2.7%, and 2.5%, respectively). A mean distance between contours pairs of 0.81 mm and a mean percentage of contour points with distance smaller than 2 pixels of 86.2% were obtained in the muscle fascia identification. Significant correlation was also found between manual and automatic IMAT and SAT cross-sectional areas in all subject typologies (p < 0.001).ConclusionThe proposed automatic segmentation approach provides adequate thigh tissue segmentation and may be helpful in studies of regional composition.© 2015 Wiley Periodicals, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.