-
Investigative radiology · May 2008
Comparative StudyQuantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques.
- Nina F Schwenzer, Jürgen Machann, Petros Martirosian, Norbert Stefan, Christina Schraml, Andreas Fritsche, Claus D Claussen, and Fritz Schick.
- Section on Experimental Radiology, Department of Diagnostic Radiology, Eberhard-Karls University, Tübingen, Germany. nina.schwenzer@med.uni-tuebingen.de
- Invest Radiol. 2008 May 1; 43 (5): 330-7.
ObjectivesThe goal of the present study was the assessment of pancreatic and hepatic fat content applying 2 established magnetic resonance (MR) imaging techniques: in-phase/opposed-phase gradient-echo MR imaging and fat-selective spectral-spatial gradient-echo imaging. Results of both approaches were compared, and influences of T1- and T2*-related corrections were assessed. The possibility of a correlation between pancreatic lipomatosis and liver steatosis was investigated.Materials And MethodsSeventeen volunteers at risk for type 2 diabetes (6 male, 11 female; age, 26-70 years; body mass index, 19.4-41.3 kg/m2; mean, 31.7 kg/m2) were examined. Liver and pancreas fat content were quantified with 2 different gradient-echo techniques: one uses a spectral-spatial excitation technique with 6 binomial radio frequency pulses, which combines chemical shift selectivity with simultaneous slice-selective excitation. The other technique based on double-echo chemical shift gradient-echo MR provides in- and opposed-phase images simultaneously. Influences of T1 and individual T2* effects on results using in-phase/opposed-phase imaging were estimated and corrected for, based on additional T2* measurements.ResultsThe fat content calculated from images recorded with the fat-selective spectral-spatial gradient-echo sequence correlated well with the fat fraction determined with in-phase/opposed-phase imaging and following correction for T1/T2* effects: pancreas r = 0.93 (P < 0.0001) and liver r = 0.96 (P < 0.0001). In-phase/opposed-phase imaging revealed a pancreatic fat content between 1.6% and 22.2% (mean, 8.8% +/- 5.7%) and a hepatic fat fraction between 0.6% and 33.3% (mean, 7.9% +/- 9.1%). The fat-selective spectral-spatial gradient-echo sequence revealed a pancreatic lipid content between 3.4% and 16.1% (mean, 9.8% +/- 4.0%) and a hepatic fat content between 0% and 28.5% (mean, 8.8% +/- 8.3%). With neither technique was a substantial correlation between pancreatic and hepatic fat content found.ConclusionThe presented results suggest that both methods are reliable tools for pancreatic and hepatic fat quantification. However, for reliable assessment of quantitative fat by the in-phase/opposed-phase technique, an additional measurement of T2* seems crucial.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.