-
Arch. Environ. Health · Sep 2002
Season modifies the relationship between bone and blood lead levels: the Normative Aging Study.
- Steve Oliveira, Antonio Aro, David Sparrow, and Howard Hu.
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
- Arch. Environ. Health. 2002 Sep 1; 57 (5): 466-72.
AbstractBone serves as a repository for 75% and 90-95% of lead in children and adults, respectively. Bone lead mobilization heightens during times of increased bone turnover, such as pregnancy, lactation, hyperthyroidism, and the rapid growth of childhood. Blood lead levels show seasonal periodicity. Children demonstrate peak blood lead levels in mid-summer and a secondary peak in late winter. Pregnant women demonstrate the highest mean blood lead levels in winter (January-March) and the lowest in summer (July-September). This fluctuation in blood lead levels may be related to seasonal patterns of environmental exposures, but it may also be partially related to the increased mobilization of bone lead stores during the winter months. We performed bone lead measurements using a K-x-ray fluorescent instrument to determine micrograms of lead per gram of bone mineral (parts per million) in middle-aged and elderly men who participated in the Normative Aging Study. We obtained measurements of blood and bone lead during the high sun exposure months of May-August (summer; n = 290); the intermediate sun exposure months of March, April, September, and October (spring/fall; n = 283); and the low sun exposure months of November-February (winter; n = 191). Mean blood lead concentrations were 5.8 microg/dl, 6.1 microg/dl, and 6.6 microg/dl for the summer, spring/fall, and winter, respectively. Mean patella (trabecular bone) lead concentrations were 34.3 microg/gm, 29.7 microg/gm, and 29.0 microg/gm for the summer, spring/fall, and winter time periods, respectively. In multivariate regression models, adjusted for age, smoking, alcohol ingestion, and dietary intake of iron and vitamin C, the authors found a strong interaction between season and bone lead level--with bone lead levels exerting an almost 2-fold greater influence on blood levels during the winter months than the summer months. The authors concluded that elevated blood lead levels in winter may be related to increased mobilization of endogenous bone lead stores, potentially from decreased exposure to sunlight, lower levels of activated vitamin D, and enhanced bone resorption.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.