• Journal of biomechanics · Jan 2008

    A new technique for internal fixation of femoral fractures in mice: impact of stability on fracture healing.

    • P Garcia, J H Holstein, T Histing, M Burkhardt, U Culemann, A Pizanis, R J Wirbel, T Pohlemann, and M D Menger.
    • Department of Trauma-, Hand- and Reconstructive Surgery, University of Saarland, Kirrbergerstr. 1, D-66421 Homburg, Saar, Germany. chpgar@uniklinikum-saarland.de
    • J Biomech. 2008 Jan 1; 41 (8): 1689-96.

    AbstractMouse models are of increasing interest to study the molecular aspects of fracture healing. Because biomechanical factors greatly influence the healing process, stable fixation of the fracture is of interest also in mouse models. Unlike in large animals, however, there is a lack of mouse models which provide stable osteosynthesis. The purpose of this study was therefore to develop a technique for a more stable fixation of femoral fractures in mice and to analyze the impact of stability on the process of fracture healing. The new technique introduced herein includes an intramedullary pin and an extramedullary metallic clip. Ex vivo biomechanical analysis revealed a significantly higher implant stiffness of our pin-clip technique when compared with previously described intramedullary fixation techniques. In vivo, we studied the course of healing after the more stable fixation with our pin-clip technique and compared the results with that observed after unstable fixation with the pin-clip technique after cutting the clip. After 2 and 5 weeks of fracture healing radiological analysis demonstrated that the more stable fixation with the pin-clip technique results in a significantly higher union rate compared to the unstable fixation. Torsional stiffness at 5 weeks was almost 3-fold of that measured after unstable fixation. Histomorphological analysis further showed that fractures stabilized with the pin-clip technique healed with a smaller periosteal callus area, an increased fraction of bone and a reduced amount of fibrous tissue. Of interest, the pin-clip fixation showed reliable union after 5 weeks, whereas the unstable pin fixation did not regularly achieve adequate fracture healing. In conclusion, we introduce a novel, easily applicable internal osteosynthesis technique in mice, which provides rotational stability after femoral fracture fixation. We further show that a more stable osteosynthesis significantly improves the process of fracture healing also in mice.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…