• IEEE Trans Biomed Eng · Sep 2009

    Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine.

    • Sofia K Michopoulou, Lena Costaridou, Elias Panagiotopoulos, Robert Speller, George Panayiotakis, and Andrew Todd-Pokropek.
    • Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT, U.K. s.michopoulou@ucl.ac.uk
    • IEEE Trans Biomed Eng. 2009 Sep 1; 56 (9): 2225-31.

    AbstractIntervertebral disc degeneration is an age-associated condition related to chronic back pain, while its consequences are responsible for over 90 % of spine surgical procedures. In clinical practice, MRI is the modality of reference for diagnosing disc degeneration. In this study, we worked toward 2-D semiautomatic segmentation of both normal and degenerated lumbar intervertebral discs from T2-weighted midsagittal MR images of the spine. This task is challenged by partial volume effects and overlapping gray-level values between neighboring tissue classes. To overcome these problems three variations of atlas-based segmentation using a probabilistic atlas of the intervertebral disc were developed and their accuracies were quantitatively evaluated against manually segmented data. The best overall performance, when considering the tradeoff between segmentation accuracy and time efficiency, was accomplished by the atlas-robust-fuzzy c-means approach, which combines prior anatomical knowledge by means of a rigidly registered probabilistic disc atlas with fuzzy clustering techniques incorporating smoothness constraints. The dice similarity indexes of this method were 91.6 % for normal and 87.2 % for degenerated discs. Research in progress utilizes the proposed approach as part of a computer-aided diagnosis system for quantification and characterization of disc degeneration severity. Moreover, this approach could be exploited in computer-assisted spine surgery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…