• Bulletin du cancer · Nov 2007

    [Phase I cancer trials methodology].

    • Christophe Le Tourneau, Sandrine Faivre, Eric Raymond, and Véronique Diéras.
    • Service inter-hospitalier de cancérologie, Hôpital Beaujon, 100, boulevard du général Leclerc, 92110 Clichy. hc.le_tourneau@cegetel.net
    • Bull Cancer. 2007 Nov 1; 94 (11): 943-51.

    AbstractThe main objective of phase I cancer trials is to determine precisely the recommended dose of an anticancer agent as a single agent or in a context of combinations of anticancer agents (including cytotoxic agents, immunotherapy, radiotherapy...), that is administered for the first time in man, to further proceed clinical development with phase II and III trials. The recommended dose must have the greatest efficiency with acceptable toxicity. For the anticancer agents, the ratio risk/benefit is high, since toxicities associated with many cancer therapeutic agents are substantial and because the efficacy is often limited. Thus, phase I cancer trials present unique challenges in comparison to other therapeutic areas. Indeed, it is essential to minimize the numbers of patients treated at subefficient dose levels, and in the same time not to expose the patients to unacceptable toxicity. Historically, the first method that has been used is the Fibonacci escalation. The major problems raised with this method have been the lengths of the trials and the risk to treat substantial numbers of patients at nontherapeutix doses. Thus, novel methods have been then developed modifying the numbers of patients included at each dose level and the rapidity of dose escalation. These methods include pharmacologically guided dose escalation, escalation with overdose control and the continual reassessment method which are both statistically based dose escalation methods, and the accelerated titration designs. Concerning the targeted anticancer therapies, the therapeutic effect on the target, due to their higher specificity, can be obtained using doses that have few toxicity. Using the toxicity to determine the recommended dose for phase II trials, as it is the case for "classical >> anticancer agents, does not seem to be sufficient. Alternatives to determine the optimal biological dose include measurement of target inhibition, pharmacokinetic analysis and functional imaging.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.