• Neurosurgery · Apr 2000

    Brain tumor surgery with the Toronto open magnetic resonance imaging system: preliminary results for 36 patients and analysis of advantages, disadvantages, and future prospects.

    • M Bernstein, A R Al-Anazi, W Kucharczyk, P Manninen, M Bronskill, and M Henkelman.
    • Division of Neurosurgery, Toronto Western Hospital, University Health Network, Ontario, Canada.
    • Neurosurgery. 2000 Apr 1; 46 (4): 900-7; discussion 907-9.

    ObjectiveFrameless navigation systems represent a huge step forward in the surgical treatment of intracranial pathological conditions but lack the ability to provide real-time imaging feedback for assessment of postoperative results, such as catheter positions and the extent of tumor resections. An open magnetic resonance imaging system for intracranial surgery was developed in Toronto, by a multidisciplinary team, to provide real-time intraoperative imaging.MethodsThe preliminary experience with a 0.2-T, vertical-gap, magnetic resonance imaging system for intraoperative imaging, which was developed at the University of Toronto for the surgical treatment of patients with intracranial lesions, is described. The system is known as the image-guided minimally invasive therapy unit.ResultsBetween February 1998 and March 1999, 36 procedures were performed, including 21 tumor resections, 12 biopsies, 1 transsphenoidal endoscopic resection, and 2 catheter placements for Ommaya reservoirs. Three complications were observed. All biopsies were successful, and the surgical goals were achieved for all resections. Problems included restricted access resulting from the confines of the magnet and the imaging coil design, difficulties in working in an operating room that is less spacious and familiar, inconsistent image quality, and a lack of nonmagnetic tools that are as effective as standard neurosurgical tools. Advantages included real-time imaging to facilitate surgical planning, to confirm entry into lesions, and to assess the extent of resection and intraoperative and immediate postoperative imaging to confirm the extent of resections, catheter placement, and the absence of postoperative complications.ConclusionIntraoperative magnetic resonance imaging has great potential as an aid for intracranial surgery, but a number of logistic problems require resolution.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.