• Nicotine Tob. Res. · Aug 2019

    Comparative Study

    Comparison of Urinary Biomarkers of Exposure in Humans Using Electronic Cigarettes, Combustible Cigarettes, and Smokeless Tobacco.

    • Pawel Lorkiewicz, Daniel W Riggs, Rachel J Keith, Daniel J Conklin, Zhengzhi Xie, Saurin Sutaria, Blake Lynch, Sanjay Srivastava, and Aruni Bhatnagar.
    • American Heart Association - Tobacco Regulation and Addiction Center, and Institute of Molecular Cardiology and Diabetes and Obesity Center, University of Louisville, Louisville, KY.
    • Nicotine Tob. Res. 2019 Aug 19; 21 (9): 1228-1238.

    BackgroundCigarette smoking is associated with an increase in cardiovascular disease risk, attributable in part to reactive volatile organic chemicals (VOCs). However, little is known about the extent of VOC exposure due to the use of other tobacco products.MethodsWe recruited 48 healthy, tobacco users in four groups: cigarette, smokeless tobacco, occasional users of first generation e-cigarette and e-cigarette menthol and 12 healthy nontobacco users. After abstaining for 48 h, tobacco users used an assigned product. Urine was collected at baseline followed by five collections over a 3-h period to measure urinary metabolites of VOCs, nicotine, and tobacco alkaloids.ResultsUrinary levels of nicotine were ≃2-fold lower in occasional e-cigarette and smokeless tobacco users than in the cigarette smokers; cotinine and 3-hydroxycotinine levels were similar in all groups. Compared with nontobacco users, e-cigarette users had higher levels of urinary metabolites of xylene, cyanide, styrene, ethylbenzene, and benzene at baseline and elevated urinary levels of metabolites of xylene, N,N-dimethylformamide, and acrylonitrile after e-cigarette use. Metabolites of acrolein, crotonaldehyde, and 1,3-butadiene were significantly higher in smokers than in users of other products or nontobacco users. VOC metabolite levels in smokeless tobacco group were comparable to those found in nonusers with the exception of xylene metabolite-2-methylhippuric acid (2MHA), which was almost three fold higher than in nontobacco users.ConclusionsSmoking results in exposure to a range of VOCs at concentrations higher than those observed with other products, and first generation e-cigarette use is associated with elevated levels of N,N-dimethylformamide and xylene metabolites.ImplicationsThis study shows that occasional users of first generation e-cigarettes have lower levels of nicotine exposure than the users of combustible cigarettes. Compared with combustible cigarettes, e-cigarettes, and smokeless tobacco products deliver lower levels of most VOCs, with the exception of xylene, N,N-dimethylformamide, and acrylonitrile, whose metabolite levels were higher in the urine of e-cigarette users than nontobacco users. Absence of anatabine in the urine of e-cigarette users suggests that measuring urinary levels of this alkaloid may be useful in distinguishing between users of e-cigarettes and combustible cigarettes. However, these results have to be validated in a larger cohortcomprised of users of e-cigarettes of multiple brands.© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…