• Investigative radiology · Dec 1991

    Fatty liver. Chemical shift phase-difference and suppression magnetic resonance imaging techniques in animals, phantoms, and humans.

    • D G Mitchell, I Kim, T S Chang, S Vinitski, P M Consigny, S A Saponaro, S M Ehrlich, M D Rifkin, and R Rubin.
    • Department of Radiology, Thomas Jefferson University Hospital, Jefferson Medical College, Philadelphia, Pennsylvania.
    • Invest Radiol. 1991 Dec 1; 26 (12): 1041-52.

    AbstractIn vitro animal and human models were used to evaluate the potential of chemical shift magnetic resonance imaging (MRI) for assessing fatty liver. Phantoms of varying fat content were created from mayonnaise-agar preparations. Fatty liver was induced in eight rats by feeding them ethanol for three to six weeks (36% of total calories), whereas eight control rats were fed a normal diet. T1-weighted in-phase and opposed-phase MR images were obtained of the phantoms animals, and 28 human subjects. Additional images obtained in animals included long TR images with in-phase and opposed-phase technique, and hybrid chemical shift water and fat suppression. The rats were killed and histologic status was graded blindly by a hepatopathologist as normal, mild, moderate, or severe fatty change, for correlation with MR grading. Quantitative analysis of MR images included fat signal fraction for animals, and relative signal decrease between in-phase and opposed-phase images for phantom and human data. Phantom in-phase signal increased linearly with respect to fat content, whereas opposed-phase signal decreased linearly. MRI and histologic grading of rat livers were highly correlated, especially when based on water suppression images (r = 0.91, P = .0001). Opposed-phase images were also highly correlated, while fat suppression images were less effective. There was no overlap between MR-derived fat fractions for control (2.6%-5.7%) versus ethanol-fed rats (7.7%-17.9%, P = .0002). Human liver considered to be fatty by visual inspection (n = 8) had higher relative signal decrease than nonfatty liver (n = 22) (P less than .001). Phantom, animal, and human data demonstrate that comparison of T1-weighted in-phase and opposed-phase images is both practical and sensitive in the detection and grading of fatty liver.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.