• Glia · Mar 2008

    Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling.

    • Makoto Tsuda, Hikaru Ueno, Ayako Kataoka, Hidetoshi Tozaki-Saitoh, and Kazuhide Inoue.
    • Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
    • Glia. 2008 Mar 1;56(4):378-86.

    AbstractPainful neuropathy is one of the most common complications of diabetes, one hallmark of which is tactile allodynia (pain hypersensitivity to innocuous stimulation). The underlying mechanisms of tactile allodynia are, however, poorly understood. Emerging evidence indicates that, following nerve injury, activated microglia in the spinal cord play a crucial role in tactile allodynia. However, it remains unknown whether spinal microglia are activated under diabetic conditions and whether they contribute to diabetes-induced tactile allodynia. In the present study, using streptozotocin (STZ)-induced diabetic rats that displayed tactile allodynia, we found several morphological changes of activated microglia in the dorsal horn. These included increases in Iba1 and OX-42 labeling (markers of microglia), hypertrophic morphology, the thickness and the retraction of processes, and in the number of activated microglia cells. Furthermore, in the dorsal horn of STZ diabetic rats, extracellular signal-regulated protein kinase (ERK) and an upstream kinase, Src-family kinase (SFK), both of which are implicated in microglial functions, were activated exclusively in microglia. Moreover, inhibition of ERK phosphorylation in the dorsal horn by intrathecal administration of U0126, an inhibitor of ERK activation, produced a striking alleviation of existing, long-term tactile allodynia of diabetic rats. We also found that a single administration of U0126 reduced the expression of allodynia. Together, these results suggest that activated dorsal horn microglia may be a crucial component of diabetes-induced tactile allodynia, mediated, in part, by the ERK signaling pathway. Thus, inhibiting microglia activation in the dorsal horn may represent a therapeutic strategy for treating diabetic tactile allodynia.(Copyright) 2008 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.