• Health Qual Life Out · Oct 2019

    Mapping function from FACT-B to EQ-5D-5 L using multiple modelling approaches: data from breast cancer patients in China.

    • Qing Yang, Xue Xin Yu, Wei Zhang, and Hui Li.
    • Institute of Hospital Management, West China Hospital, Sichuan University, Chengdu, 610041, China.
    • Health Qual Life Out. 2019 Oct 15; 17 (1): 153.

    BackgroundThe Functional Assessment of Cancer Therapy-Breast (FACT-B) is the most commonly used scale for assessing quality of life in patients with breast cancer. The lack of preference-based measures limits the cost-utility of breast cancer in China. The goal of this study was to explore whether a mapping function can be established from the FACT-B to the EQ-5D-5 L when the EQ-5D health-utility index is not available.MethodsA cross-sectional survey of adults with breast cancer was conducted in China. All patients included in the study completed the EQ-5D-5 L and the disease-specific FACT-B questionnaire, and demographic and clinical data were also collected. The Chinese tariff value was used to calculate the EQ-5D-5 L utility scores. Five models were evaluated using three different modelling approaches: the ordinary least squares (OLS) model, the Tobit model and the two-part model (TPM). Total scores, domain scores, squared terms and interaction terms were introduced into models. The goodness of fit, signs of the estimated coefficients, and normality of prediction errors of the model were also assessed. The normality of the prediction error is determined by calculating the root mean squared error (RMSE), the mean absolute deviation (MAD), and the mean absolute error (MAE). Akaike information criteria (AIC) and Bayes information criteria (BIC) were also used to assess models and predictive performances. The OLS model was followed by simple linear equating to avoid regression to the mean.ResultsThe performance of the models was improved after the introduction of the squared terms and the interaction terms. The OLS model, including the squared terms and the interaction terms, performed best for mapping the EQ-5D-5 L. The explanatory power of the OLS model was 70.0%. The AIC and BIC of this model were the smallest (AIC = -705.106, BIC = -643.601). The RMSE, MAD and MAE of the OLS model, Tobit model and TPM were similar. The MAE values of the 5-fold cross-validation of the multiple models in this study were 0.07155~0.08509; meanwhile, the MAE of the TPM was the smallest, followed by that of the OLS model. The OLS regression proved to be the most accurate for the mean, and linearly equated scores were much closer to observed scores.ConclusionsThis study establishes a mapping algorithm based on the Chinese population to estimate the EQ-5D-5 L index of the FACT-B and confirms that OLS models have higher explanatory power and that TPMs have lower prediction error. Given the accuracy of the mean prediction and the simplicity of the model, we recommend using the OLS model. The algorithm can be used to calculate EQ-5D scores when EQ-5D data are not directly collected in a study.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…