• Clinical radiology · May 2019

    Review

    Artificial intelligence in breast imaging.

    • E P V Le, Y Wang, Y Huang, S Hickman, and F J Gilbert.
    • University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK; EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge CB3 0WA, UK.
    • Clin Radiol. 2019 May 1; 74 (5): 357-366.

    AbstractThis article reviews current limitations and future opportunities for the application of computer-aided detection (CAD) systems and artificial intelligence in breast imaging. Traditional CAD systems in mammography screening have followed a rules-based approach, incorporating domain knowledge into hand-crafted features before using classical machine learning techniques as a classifier. The first commercial CAD system, ImageChecker M1000, relies on computer vision techniques for pattern recognition. Unfortunately, CAD systems have been shown to adversely affect some radiologists' performance and increase recall rates. The Digital Mammography DREAM Challenge was a multidisciplinary collaboration that provided 640,000 mammography images for teams to help decrease false-positive rates in breast cancer screening. Winning solutions leveraged deep learning's (DL) automatic hierarchical feature learning capabilities and used convolutional neural networks. Start-ups Therapixel and Kheiron Medical Technologies are using DL for breast cancer screening. With increasing use of digital breast tomosynthesis, specific artificial intelligence (AI)-CAD systems are emerging to include iCAD's PowerLook Tomo Detection and ScreenPoint Medical's Transpara. Other AI-CAD systems are focusing on breast diagnostic techniques such as ultrasound and magnetic resonance imaging (MRI). There is a gap in the market for contrast-enhanced spectral mammography AI-CAD tools. Clinical implementation of AI-CAD tools requires testing in scenarios mimicking real life to prove its usefulness in the clinical environment. This requires a large and representative dataset for testing and assessment of the reader's interaction with the tools. A cost-effectiveness assessment should be undertaken, with a large feasibility study carried out to ensure there are no unintended consequences. AI-CAD systems should incorporate explainable AI in accordance with the European Union General Data Protection Regulation (GDPR).Copyright © 2019 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…