• Gastroenterology · Oct 2017

    Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.

    • Guoying Zhou, Dave Sprengers, BoorPatrick P CPPCDepartment of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands., Michail Doukas, Hannah Schutz, Shanta Mancham, Alexander Pedroza-Gonzalez, Wojciech G Polak, Jeroen de Jonge, Marcia Gaspersz, Haidong Dong, Kris Thielemans, Qiuwei Pan, IJzermansJan N MJNMLaboratory of Immunology Research, FES-Iztacala, UNAM, Mexico., Marco J Bruno, and Jaap Kwekkeboom.
    • Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, the Netherlands.
    • Gastroenterology. 2017 Oct 1; 153 (4): 1107-1119.e10.

    Background & AimsLigand binding to inhibitory receptors on immune cells, such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4), down-regulates the T-cell-mediated immune response (called immune checkpoints). Antibodies that block these receptors increase antitumor immunity in patients with melanoma, non-small-cell lung cancer, and renal cell cancer. Tumor-infiltrating CD4+ and CD8+ T cells in patients with hepatocellular carcinoma (HCC) have been found to be functionally compromised. We analyzed HCC samples from patients to determine if these inhibitory pathways prevent T-cell responses in HCCs and to find ways to restore their antitumor functions.MethodsWe collected HCC samples from 59 patients who underwent surgical resection from November 2013 through May 2017, along with tumor-free liver tissues (control tissues) and peripheral blood samples. We isolated tumor-infiltrating lymphocytes (TIL) and intra-hepatic lymphocytes. We used flow cytometry to quantify expression of the inhibitory receptors PD-1, hepatitis A virus cellular receptor 2 (TIM3), lymphocyte activating 3 (LAG3), and CTLA4 on CD8+ and CD4+ T cells from tumor, control tissue, and blood; we studied the effects of antibodies that block these pathways in T-cell activation assays.ResultsExpression of PD-1, TIM3, LAG3, and CTLA4 was significantly higher on CD8+ and CD4+ T cells isolated from HCC tissue than control tissue or blood. Dendritic cells, monocytes, and B cells in HCC tumors expressed ligands for these receptors. Expression of PD-1, TIM3, and LAG3 was higher on tumor-associated antigen (TAA)-specific CD8+ TIL, compared with other CD8+ TIL. Compared with TIL that did not express these inhibitory receptors, CD8+ and CD4+ TIL that did express these receptors had higher levels of markers of activation, but similar or decreased levels of granzyme B and effector cytokines. Antibodies against CD274 (PD-ligand1 [PD-L1]), TIM3, or LAG3 increased proliferation of CD8+ and CD4+ TIL and cytokine production in response to stimulation with polyclonal antigens or TAA. Importantly, combining antibody against PD-L1 with antibodies against TIM3, LAG3, or CTLA4 further increased TIL functions.ConclusionsThe immune checkpoint inhibitory molecules PD-1, TIM3, and LAG3 are up-regulated on TAA-specific T cells isolated from human HCC tissues, compared with T cells from tumor-free liver tissues or blood. Antibodies against PD-L1, TIM3, or LAG3 restore responses of HCC-derived T cells to tumor antigens, and combinations of the antibodies have additive effects. Strategies to block PD-L1, TIM3, and LAG3 might be developed for treatment of primary liver cancer.Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.