• IEEE Trans Med Imaging · Jun 2005

    Comparative Study

    Despeckling of medical ultrasound images using data and rate adaptive lossy compression.

    • Nikhil Gupta, M N S Swamy, and Eugene Plotkin.
    • Center for Signal Processing and Communications, Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada. n_gupta@ece.concordia.ca
    • IEEE Trans Med Imaging. 2005 Jun 1; 24 (6): 743-54.

    AbstractA novel technique for despeckling the medical ultrasound images using lossy compression is presented. The logarithm of the input image is first transformed to the multiscale wavelet domain. It is then shown that the subband coefficients of the log-transformed ultrasound image can be successfully modeled using the generalized Laplacian distribution. Based on this modeling, a simple adaptation of the zero-zone and reconstruction levels of the uniform threshold quantizer is proposed in order to achieve simultaneous despeckling and quantization. This adaptation is based on: (1) an estimate of the corrupting speckle noise level in the image; (2) the estimated statistics of the noise-free subband coefficients; and (3) the required compression rate. The Laplacian distribution is considered as a special case of the generalized Laplacian distribution and its efficacy is demonstrated for the problem under consideration. Context-based classification is also applied to the noisy coefficients to enhance the performance of the subband coder. Simulation results using a contrast detail phantom image and several real ultrasound images are presented. To validate the performance of the proposed scheme, comparison with two two-stage schemes, wherein the speckled image is first filtered and then compressed using the state-of-the-art JPEG2000 encoder, is presented. Experimental results show that the proposed scheme works better, both in terms of the signal to noise ratio and the visual quality.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…