-
Int. J. Radiat. Oncol. Biol. Phys. · Oct 2004
Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation.
- Rodney J Hicks, Michael P Mac Manus, Jane P Matthews, Annette Hogg, David Binns, Danny Rischin, David L Ball, and Lester J Peters.
- Centre for Molecular Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia.
- Int. J. Radiat. Oncol. Biol. Phys. 2004 Oct 1; 60 (2): 412-8.
PurposeTo investigate the relationship between positron emission tomography (PET) detected inflammatory changes in irradiated normal tissues and metabolic response at tumor sites in patients receiving radical radiotherapy for non-small-cell lung cancer. The prognostic significance of these changes was also studied.MethodsIn 73 consecutive patients, (18)F-fluorodeoxyglucose (FDG) PET was performed at a median of 70 days after completion of radical radiotherapy. Radiation-induced inflammatory change was scored for normal tissues within the radiation treatment volume using a 0-3 grading scale. Metabolic tumor response was assessed using a pattern-recognition algorithm comparing pre- and posttreatment scans. Prognostic significance of inflammatory changes was tested using the Cox proportional hazards regression model.ResultsIncreased FDG uptake in normal tissues (radiotoxicity) was associated with a greater likelihood of complete or partial tumor response on both PET (p = 0.0044) and computed tomography (p = 0.029). Prognostic stratification provided by PET response was both significant and of a similar magnitude in patients with low- and high-grade radiotoxicity.ConclusionPostradiotherapy inflammatory changes detected by FDG-PET are positively correlated with tumor response, suggesting that tumor radioresponsiveness and normal tissue radiosensitivity may be linked. Prognostic stratification provided by PET is not compromised by inflammatory changes if a meticulous visual response assessment technique is used.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.