-
- Baoyun Xia, Benjamin C Blount, Tonya Guillot, Christina Brosius, Yao Li, Dana M Van Bemmel, Heather L Kimmel, Cindy M Chang, Nicolette Borek, Kathryn C Edwards, Charlie Lawrence, Andrew Hyland, Maciej L Goniewicz, Brittany N Pine, Yang Xia, John T Bernert, B Rey De Castro, John Lee, Justin L Brown, Stephen Arnstein, Diane Choi, Erin L Wade, Dorothy Hatsukami, Gladys Ervies, Angel Cobos, Keegan Nicodemus, Dana Freeman, Stephen S Hecht, Kevin Conway, and Lanqing Wang.
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA.
- Nicotine Tob. Res. 2021 Feb 16; 23 (3): 573-583.
IntroductionThe tobacco-specific nitrosamines (TSNAs) are an important group of carcinogens found in tobacco and tobacco smoke. To describe and characterize the levels of TSNAs in the Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013-2014), we present four biomarkers of TSNA exposure: N'-nitrosonornicotine, N'-nitrosoanabasine, N'-nitrosoanatabine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which is the primary urinary metabolite of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.MethodsWe measured total TSNAs in 11 522 adults who provided urine using automated solid-phase extraction coupled to isotope dilution liquid chromatography-tandem mass spectrometry. After exclusions in this current analysis, we selected 11 004 NNAL results, 10 753 N'-nitrosonornicotine results, 10 919 N'-nitrosoanatabine results, and 10 996 N'-nitrosoanabasine results for data analysis. Geometric means and correlations were calculated using SAS and SUDAAN.ResultsTSNA concentrations were associated with choice of tobacco product and frequency of use. Among established, every day, exclusive tobacco product users, the geometric mean urinary NNAL concentration was highest for smokeless tobacco users (993.3; 95% confidence interval [CI: 839.2, 1147.3] ng/g creatinine), followed by all types of combustible tobacco product users (285.4; 95% CI: [267.9, 303.0] ng/g creatinine), poly tobacco users (278.6; 95% CI: [254.9, 302.2] ng/g creatinine), and e-cigarette product users (6.3; 95% CI: [4.7, 7.9] ng/g creatinine). TSNA concentrations were higher in every day users than in intermittent users for all the tobacco product groups. Among single product users, exposure to TSNAs differed by sex, age, race/ethnicity, and education. Urinary TSNAs and nicotine metabolite biomarkers were also highly correlated.ConclusionsWe have provided PATH Study estimates of TSNA exposure among US adult users of a variety of tobacco products. These data can inform future tobacco product and human exposure evaluations and related regulatory activities.Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2020.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.