• Genome medicine · Nov 2019

    Review

    Artificial intelligence in clinical and genomic diagnostics.

    • Raquel Dias and Ali Torkamani.
    • The Scripps Translational Science Institute, The Scripps Research Institute, 3344 North Torrey Pines Court Suite 300, La Jolla, CA, 92037, USA.
    • Genome Med. 2019 Nov 19; 11 (1): 70.

    AbstractArtificial intelligence (AI) is the development of computer systems that are able to perform tasks that normally require human intelligence. Advances in AI software and hardware, especially deep learning algorithms and the graphics processing units (GPUs) that power their training, have led to a recent and rapidly increasing interest in medical AI applications. In clinical diagnostics, AI-based computer vision approaches are poised to revolutionize image-based diagnostics, while other AI subtypes have begun to show similar promise in various diagnostic modalities. In some areas, such as clinical genomics, a specific type of AI algorithm known as deep learning is used to process large and complex genomic datasets. In this review, we first summarize the main classes of problems that AI systems are well suited to solve and describe the clinical diagnostic tasks that benefit from these solutions. Next, we focus on emerging methods for specific tasks in clinical genomics, including variant calling, genome annotation and variant classification, and phenotype-to-genotype correspondence. Finally, we end with a discussion on the future potential of AI in individualized medicine applications, especially for risk prediction in common complex diseases, and the challenges, limitations, and biases that must be carefully addressed for the successful deployment of AI in medical applications, particularly those utilizing human genetics and genomics data.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.