-
Medical image analysis · Feb 2007
Hidden Markov multiple event sequence models: A paradigm for the spatio-temporal analysis of fMRI data.
- S Faisan, L Thoraval, J-P Armspach, and F Heitz.
- Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, UMR CNRS-ULP 7005, Strasbourg I University, France. faisan@lsiit.u-strasbg.fr
- Med Image Anal. 2007 Feb 1; 11 (1): 1-20.
AbstractThis paper presents a novel, completely unsupervised fMRI brain mapping method that addresses the three problems of hemodynamic response function (HRF) variability, hemodynamic event timing, and fMRI response non-linearity. Spatial and temporal information are directly taken into account into the core of the activation detection process. In practice, activation detection at voxel v is formulated in terms of temporal alignment between sequences of hemodynamic response onsets (HROs) detected in the fMRI signal at v and in the spatial neighborhood of v, and the input sequence of stimuli or stimulus onsets. Event-related and epoch paradigms are considered. The multiple event sequence alignment problem is solved within the probabilistic framework of hidden Markov multiple event sequence models (HMMESMs), a new class of hidden Markov models. Results obtained on real and synthetic data significantly outperform those obtained with the popular statistical parametric mapping (SPM2) method without requiring any prior definition of the expected activation patterns, the HMMESM mapping approach being completely unsupervised.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.