• IEEE Trans Med Imaging · Feb 2012

    HRF estimation in fMRI data with an unknown drift matrix by iterative minimization of the Kullback-Leibler divergence.

    • Abd-Krim Seghouane and Adnan Shah.
    • National ICT Australia, Canberra Research Laboratory, The Australian National University, College of Engineering and Computer Science, Canberra 2601, Australia. abd-krim.seghouane@nicta.com.au
    • IEEE Trans Med Imaging. 2012 Feb 1; 31 (2): 192-206.

    AbstractHemodynamic response function (HRF) estimation in noisy functional magnetic resonance imaging (fMRI) plays an important role when investigating the temporal dynamic of a brain region response during activations. Nonparametric methods which allow more flexibility in the estimation by inferring the HRF at each time sample have provided improved performance in comparison to the parametric methods. In this paper, the mixed-effects model is used to derive a new algorithm for nonparametric maximum likelihood HRF estimation. In this model, the random effect is used to better account for the variability of the drift. Contrary to the usual approaches, the proposed algorithm has the benefit of considering an unknown and therefore flexible drift matrix. This allows the effective representation of a broader class of drift signals and therefore the reduction of the error in approximating the drift component. Estimates of the HRF and the hyperparameters are derived by iterative minimization of the Kullback-Leibler divergence between a model family of probability distributions defined using the mixed-effects model and a desired family of probability distributions constrained to be concentrated on the observed data. The performance of proposed method is demonstrated on simulated and real fMRI data, the latter originating from both event-related and block design fMRI experiments.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…