• Clin. Orthop. Relat. Res. · Dec 2019

    Prediction of Autograft Hamstring Size for Anterior Cruciate Ligament Reconstruction Using MRI.

    • Katharine Hollnagel, Brent M Johnson, Kelley K Whitmer, Andrew Hanna, and Thomas K Miller.
    • K. Hollnagel, Department of Orthopaedic Surgery, University of Toledo, Toledo, OH, USA B. Johnson, T. K. Miller, Department of Orthopaedic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA K. Whitmer , Department of Radiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA A. Hanna, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
    • Clin. Orthop. Relat. Res. 2019 Dec 1; 477 (12): 2677-2684.

    BackgroundHamstring autografts with a diameter of less than 8 mm for ACL reconstruction have an increased risk of failure, but there is no consensus regarding the best method to predict autograft size in ACL reconstruction.Questions/Purposes(1) What is the relationship between hamstring cross-section on preoperative MRI and intraoperative autograft size? (2) What is the minimum hamstring tendon cross-sectional area on MRI needed to produce an autograft of at least 8 mm at its thickest point?MethodsThis was a retrospective cohort study of 68 patients. We collectively reviewed patients who underwent ACL reconstruction by three separate fellowship-trained surgeons at the Carilion Clinic between April 2010 and July 2013. We searched the patient records database of each surgeon using the keyword "ACL". A total of 293 ACL reconstructions were performed during that time period. Of those, 23% (68 patients) had their preoperative MRI (1.5 T or 3 T magnet) performed at the Carilion Clinic with MRI confirmation of acute total ACL rupture. Exclusion criteria included previous ACL reconstructions, multiligamentous injuries, and history of acute hamstring injuries.After applying the exclusion criteria, there were 29 patients in the 1.5 T magnet group and 39 in the 3 T group. Median age (range) was 29 years (12 to 50) for the 1.5 T group and 19 years (9 to 43) for the 3 T group. The patients were 41% female in the 1.5 T group and 23% female in the 3 T group. Use of 1.5 T or 3 T magnets was based on clinical availability and scheduling. The graft's preoperative cross-sectional area was compared with the intraoperative graft's diameter. The MRI measurements were performed by a single musculoskeletal radiologist at the widest point of the medial femoral condyle and at the joint line. Intraoperative measurements were performed by recording the smallest hole the graft could fit through at its widest point. Pearson's correlation coefficients were calculated to determine the relationship between graft size and tendon cross-sectional area. A simple logistic regression analysis was used to calculate the cutoff cross-sectional areas needed for a graft measuring at least 8 mm at its thickest point. Intrarater reliability was evaluated based on re-measurement of 19 tendons, which produced an overall intraclass correlation coefficient (ICC) of 0.96 95% (CI 0.93 to 0.98). A p value < 0.05 was considered significant.ResultsIn general, the correlation between MRI-measured hamstring thickness and hamstring graft thickness as measured in the operating room were good but not excellent. The three measurements that demonstrated the strongest correlation with graft size in the 1.5 T group were the semitendinosus at the medial femoral condyle (r = 0.69; p < 0.001), the semitendinosus and gracilis at the medial femoral condyle (r = 0.70; p < 0.001), and the mean semitendinosus and gracilis (r = 0.64; p < 0.001). These three measurements had correlation values of 0.53, 0.56, and 0.56, respectively, in the 3 T MRI group (all p values < 0.001). To create an 8-mm hamstring autograft, the mean semitendinosus plus gracilis cutoff values areas were 18.8 mm and 17.5 mm for the 1.5 T and 3.0 T MRI groups, respectively.ConclusionsImaging performed according to routine knee injury protocol can be used to preoperatively predict the size of hamstring autografts for ACL reconstructions. In clinical practice, this can assist orthopaedic surgeons in graft selection and surgical planning.Level Of EvidenceLevel II, diagnostic study.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.