• Int. J. Radiat. Oncol. Biol. Phys. · Feb 2005

    Low-dose megavoltage cone-beam CT for radiation therapy.

    • Jean Pouliot, Ali Bani-Hashemi, Josephine Chen, Michelle Svatos, Farhad Ghelmansarai, Matthias Mitschke, Michele Aubin, Ping Xia, Olivier Morin, Kara Bucci, Mack Roach, Paco Hernandez, Zirao Zheng, Dimitre Hristov, and Lynn Verhey.
    • Department of Radiation Oncology, University of California San Francisco, CA 94143-1708, USA. pouliot@radonc17.ucsf.edu
    • Int. J. Radiat. Oncol. Biol. Phys. 2005 Feb 1; 61 (2): 552-60.

    PurposeThe objective of this work was to demonstrate the feasibility of acquiring low-exposure megavoltage cone-beam CT (MV CBCT) three-dimensional (3D) image data of sufficient quality to register the CBCT images to kilovoltage planning CT images for patient alignment and dose verification purposes.Methods And MaterialsA standard clinical 6-MV Primus linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) flat-panel electronic portal-imaging device (EPID) were employed. The dose-pulse rate of 6-MV Primus accelerator beam was windowed to expose an a-Si flat panel by using only 0.02 to 0.08 monitor unit (MUs) per image. A triggered image-acquisition mode was designed to produce a high signal-to-noise ratio without pulsing artifacts. Several data sets were acquired for an anthropomorphic head phantom and frozen sheep and pig cadaver head, as well as for a head-and-neck cancer patient on intensity-modulated radiotherapy (IMRT). For each CBCT image, a set of 90 to 180 projection images incremented by 1 degree to 2 degrees was acquired. The two-dimensional (2D) projection images were then synthesized into a 3D image by use of cone-beam CT reconstruction. The resulting MV CBCT image set was used to visualize the 3D bony anatomy and some soft-tissue details. The 3D image registration with the kV planning CT was performed either automatically by application of a maximization of mutual information (MMI) algorithm or manually by aligning multiple 1D slices.ResultsLow-noise 3D MV CBCT images without pulsing artifacts were acquired with a total delivered dose that ranged from 5 to 15 cGy. Acquisition times, including image readout, were on the order of 90 seconds for 180 projection images taken through a continuous gantry rotation of 180 degrees. The processing time of the data required an additional 90 seconds for the reconstruction of a 256(3) cube with 1.0-mm voxel size. Implanted gold markers (1 mm x 3 mm) were easily visible or all exposure levels without artifacts. In general, the presence of high Z materials such as tooth fillings or implanted markers did not result in visible streak artifacts. The registration of structures such as the spinal canal and the nasopharynx in the MV CBCT and kV CT data sets was possible with millimeter and degree accuracy as assessed by displacement simulations and subsequent visual evaluation.ConclusionsWe believe that the quality of these images, along with the rapid acquisition and reconstruction times, demonstrates that MV CBCT performed by use of a standard linear accelerator equipped with a flat-panel imager can be applied clinically for patient alignment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.