-
IEEE Trans Med Imaging · Jun 2008
Probabilistic framework for brain connectivity from functional MR images.
- Jagath C Rajapakse, Yang Wang, Xuebin Zheng, and Juan Zhou.
- School of Computer Engineering and the BioInformatics Research Centre, Nanyang Technological University, 50 Nanyang Avenue,639798 Singapore. asjagath@ntu.edu.sg
- IEEE Trans Med Imaging. 2008 Jun 1; 27 (6): 825-33.
AbstractThis paper unifies our earlier work on detection of brain activation (Rajapakse and Piyaratna, 2001) and connectivity (Rajapakse and Zhou, 2007) in a probabilistic framework for analyzing effective connectivity among activated brain regions from functional magnetic resonance imaging (fMRI) data. Interactions among brain regions are expressed by a dynamic Bayesian network (DBN) while contextual dependencies within functional images are formulated by a Markov random field. The approach simultaneously considers both the detection of brain activation and the estimation of effective connectivity and does not require a priori model of connectivity. Experimental results show that the present approach outperforms earlier fMRI analysis techniques on synthetic functional images and robustly derives brain connectivity from real fMRI data.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.