• Neurobiology of disease · Oct 2013

    Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain.

    • Iryna A Khasabova, Michelle Holman, Tim Morse, Natalya Burlakova, Lia Coicou, Catherine Harding-Rose, Don A Simone, and Virginia S Seybold.
    • Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, Minneapolis, MN, USA.
    • Neurobiol. Dis. 2013 Oct 1;58:19-28.

    AbstractOpioids do not effectively manage pain in many patients with advanced cancer. Because anandamide (AEA) activation of cannabinoid type-1 receptors (CB1R) on nociceptors reduces nociception, manipulation of AEA metabolism in the periphery may be an effective alternative or adjuvant therapy in the management of cancer pain. AEA is hydrolyzed by the intracellular enzyme fatty acid amide hydrolase (FAAH), and this enzyme activity contributes to uptake of AEA into neurons and to reduction of AEA available to activate CB1R. We used an in vitro preparation of adult murine dorsal root ganglion (DRG) neurons co-cultured with fibrosarcoma cells to investigate how tumors alter the uptake of AEA into neurons. Evidence that the uptake of [(3)H]AEA into dissociated DRG cells in the co-culture model mimicked the increase in uptake that occurred in DRG cells from tumor-bearing mice supported the utility of the in vitro model to study AEA uptake. Results with the fluorescent AEA analog CAY10455 confirmed that an increase in uptake in the co-culture model occurred in neurons. One factor that contributed to the increase in [(3)H]AEA uptake was an increase in total cellular cholesterol in the cancer condition. Treatment with the FAAH inhibitor URB597 reduced CAY10455 uptake in the co-culture model to the level observed in DRG neurons maintained in the control condition (i.e., in the absence of fibrosarcoma cells), and this effect was paralleled by OMDM-1, an inhibitor of AEA uptake, at a concentration that had no effect on FAAH activity. Maximally effective concentrations of the two drugs together produced a greater reduction than was observed with each drug alone. Treatment with BMS309403, which competes for AEA binding to fatty acid binding protein-5, mimicked the effect of OMDM-1 in vitro. Local injection of OMDM-1 reduced hyperalgesia in vivo in mice with unilateral tumors in and around the calcaneous bone. Intraplantar injection of OMDM-1 (5μg) into the tumor-bearing paw reduced mechanical hyperalgesia through a CB1R-dependent mechanism and also reduced a spontaneous nocifensive behavior. The same dose reduced withdrawal responses evoked by suprathreshold mechanical stimuli in naive mice. These data support the conclusion that OMDM-1 inhibits AEA uptake by a mechanism that is independent of inhibition of FAAH and provide a rationale for the development of peripherally restricted drugs that decrease AEA uptake for the management of cancer pain.Copyright © 2013 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.