-
- Daniel S Moran, Rachel K Evans, and Eran Hadad.
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel. dmoran@sheba.health.gov.il
- Sports Med. 2008 Jan 1; 38 (4): 345-56.
AbstractStress reactions and stress fractures in the lower extremities occur frequently in military and athletic populations. As the clinical symptoms of stress fracture may mimic other less severe musculoskeletal injuries, the diagnosis of stress fracture can often be delayed. The following article reviews the characteristics, advantages and disadvantages of the various imaging tools available to detect stress fracture of the lower limbs in order to clarify their utility when diagnosing this condition. Plain radiography, the primary imaging tool for diagnosing suspected stress injuries, may not detect stress fracture injury until fracture healing is well underway. In some cases of suspected stress fracture, this delay in diagnosis can lead to catastrophic fracture and surgical intervention. Bone scintigraphy has long been recommended for the diagnosis of stress fracture, claiming that skeletal scintigraphy is 100% sensitive for the detection of stress fracture. However, there is a potential for a false negative examination and findings might be nonspecific as tumours or infections may mimic stress injury. In addition, bone scintigraphy involves ionizing radiation and it should not be used whenever there is an alternative. Computed tomography (CT) provides exquisitely fine osseous detail, but should be reserved only for specific indications because it also involves ionizing radiation. Magnetic resonance (MR) imaging, which is noninvasive, has no ionizing radiation, is more rapidly performed than bone scintigraphy, and should be the method of choice for stress fracture diagnosis whenever it is available. However, using MR imaging demands an experienced diagnostician in order to decrease reported false-positive injuries. The ultrasonography technique, which is being used increasingly in the evaluation of the musculoskeletal system has recently been shown to have some potential in the diagnosis of stress fracture; however, currently the imaging modalities are insufficient. The peripheral quantitative CT (pQCT) device, which has been developed to specifically assess skeletal status of the extremities, provides data on bone geometry, strength and density. However, the pQCT needs further evaluation prior to being considered for use in diagnosis stress changes in bone. This article reviews the utility of each of the imaging modalities currently available to detect stress fracture injuries of the lower extremities, as well as other utilization factors, which include exposure to ionizing radiation, the ability to detect early- and late-stage reactions in the bone and surrounding soft tissues, and the ability to differentiate between different types of bone lesions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.