• Osteoarthr. Cartil. · Apr 2017

    Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite.

    • Y B Park, C W Ha, J A Kim, W J Han, J H Rhim, H J Lee, K J Kim, Y G Park, and J Y Chung.
    • Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea. Electronic address: whybe1122@gmail.com.
    • Osteoarthr. Cartil. 2017 Apr 1; 25 (4): 570-580.

    ObjectiveHuman umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have gained popularity as a promising cell source for regenerative medicine, but limited in vivo studies have reported cartilage repair. In addition, the roles of MSCs in cartilage repair are not well-understood. The purpose of this study was to investigate the feasibility of transplanting hUCB-MSCs and hyaluronic acid (HA) hydrogel composite to repair articular cartilage defects in a rabbit model and determine whether the transplanted cells persisted or disappeared from the defect site.DesignOsteochondral defects were created in the trochlear grooves of the knees. The hUCB-MSCs and HA composite was transplanted into the defect of experimental knees. Control knees were transplanted by HA or left untreated. Animals were sacrificed at 8 and 16 weeks post-transplantation and additionally at 2 and 4 weeks to evaluate the fate of transplanted cells. The repair tissues were evaluated by gross, histological and immunohistochemical analysis.ResultsTransplanting hUCB-MSCs and HA composite resulted in overall superior cartilage repair tissue with better quality than HA alone or no treatment. Cellular architecture and collagen arrangement at 16 weeks were similar to those of surrounding normal articular cartilage tissue. Histological scores also revealed that cartilage repair in experimental knees was better than that in control knees. Immunohistochemical analysis with anti-human nuclear antibody confirmed that the transplanted MSCs disappeared gradually over time.ConclusionTransplanting hUCB-MSCs and HA composite promote cartilage repair and interactions between hUCB-MSCs and host cells initiated by paracrine action may play an important role in cartilage repair.Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.