• Brain connectivity · Jan 2011

    Broadband local field potentials correlate with spontaneous fluctuations in functional magnetic resonance imaging signals in the rat somatosensory cortex under isoflurane anesthesia.

    • Wen-Ju Pan, Garth Thompson, Matthew Magnuson, Waqas Majeed, Dieter Jaeger, and Shella Keilholz.
    • Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, Georgia 30322, USA.
    • Brain Connect. 2011 Jan 1; 1 (2): 119-31.

    AbstractResting-state functional magnetic resonance imaging (fMRI) is widely used for exploring spontaneous brain activity and large-scale networks; however, the neural processes underlying the observed resting-state fMRI signals are not fully understood. To investigate the neural correlates of spontaneous low-frequency fMRI fluctuations and functional connectivity, we developed a rat model of simultaneous fMRI and multiple-site intracortical neural recordings. This allowed a direct comparison to be made between the spontaneous signals and interhemispheric connectivity measured with the two modalities. Results show that low-frequency blood oxygen level-dependent (BOLD) fluctuations (<0.1 Hz) correlate significantly with slow power modulations (<0.1 Hz) of local field potentials (LFPs) in a broad frequency range (1-100 Hz) under isoflurane anesthesia (1%-1.8%). Peak correlation occurred between neural and hemodynamic activity when the BOLD signal was delayed by ~4 sec relative to the LFP signal. The spatial location and extent of correlation was highly reproducible across studies, with the maximum correlation localized to a small area surrounding the site of microelectrode recording and to the homologous area in the contralateral hemisphere for most rats. Interhemispheric connectivity was calculated using BOLD correlation and band-limited LFP (1-4, 4-8, 8-14, 14-25, 25-40, and 40-100 Hz) coherence. Significant coherence was observed for the slow power changes of all LFP frequency bands as well as in the low-frequency BOLD data. A preliminary investigation of the effect of anesthesia on interhemispheric connectivity indicates that coherence in the high-frequency LFP bands declines with increasing doses of isoflurane, whereas coherence in the low-frequency LFP bands and the BOLD signal increases. These findings suggest that resting-state fMRI signals might be a reflection of broadband LFP power modulation, at least in isoflurane-anesthetized rats.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.