-
IEEE Trans Med Imaging · Sep 2005
White matter fiber tractography via anisotropic diffusion simulation in the human brain.
- Ning Kang, Jun Zhang, Eric S Carlson, and Daniel Gembris.
- Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA.
- IEEE Trans Med Imaging. 2005 Sep 1; 24 (9): 1127-37.
AbstractA novel approach to noninvasively tracing brain white matter fiber tracts is presented using diffusion tensor magnetic resonance imaging (DT-MRI). This technique is based on successive anisotropic diffusion simulations over the human brain, which are utilized to construct three dimensional diffusion fronts. The fiber pathways are determined by evaluating the distance and orientation from the fronts to their corresponding diffusion seeds. Synthetic and real DT-MRI data are employed to demonstrate the tracking scheme. It is shown that the synthetic tracts are accurately replicated, and several major white matter fiber pathways can be reproduced noninvasively, with the tract branching being allowed. Since simulating the diffusion process, which is truly a physical phenomenon reflecting the underlying architecture of cerebral tissues, makes full use of the diffusion tensor data, including both the magnitude and orientation information, the proposed approach is expected to enhance robustness and reliability in white matter fiber reconstruction.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.