• IEEE Trans Biomed Eng · Oct 2008

    The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.

    • Benjamin Blankertz, Florian Losch, Matthias Krauledat, Guido Dornhege, Gabriel Curio, and Klaus-Robert Müller.
    • Machine Learning Laboratory, Technical University of Berlin, Berlin, Germany. blanker@cs.tu-berlin.de
    • IEEE Trans Biomed Eng. 2008 Oct 1; 55 (10): 2452-62.

    AbstractThe Berlin Brain--Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are: 1) the use of well-established motor competences as control paradigms; 2) high-dimensional features from multichannel EEG; and 3) advanced machine-learning techniques. Spatio-spectral changes of sensorimotor rhythms are used to discriminate imagined movements (left hand, right hand, and foot). A previous feedback study [M. Krauledat, K.-R. MUller, and G. Curio. (2007) The non-invasive Berlin brain--computer Interface: Fast acquisition of effective performance in untrained subjects. NeuroImage. [Online]. 37(2), pp. 539--550. Available: http://dx.doi.org/10.1016/j.neuroimage.2007.01.051] with ten subjects provided preliminary evidence that the BBCI system can be operated at high accuracy for subjects with less than five prior BCI exposures. Here, we demonstrate in a group of 14 fully BCI-naIve subjects that 8 out of 14 BCI novices can perform at >84% accuracy in their very first BCI session, and a further four subjects at >70%. Thus, 12 out of 14 BCI-novices had significant above-chance level performances without any subject training even in the first session, as based on an optimized EEG analysis by advanced machine-learning algorithms.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.