• Am J Sports Med · Apr 2015

    Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee.

    • Theodore B Shybut, Charles E Vega, Jebran Haddad, Jerry W Alexander, Jonathon E Gold, Philip C Noble, and Walter R Lowe.
    • Baylor College of Medicine, Houston, Texas, USA shybut@bcm.edu.
    • Am J Sports Med. 2015 Apr 1; 43 (4): 905-11.

    BackgroundMeniscal root tears are an increasingly recognized subset of meniscal injury. The menisci are critical secondary stabilizers of the anterior cruciate ligament (ACL). The kinematic effect of lateral meniscus posterior root tear in the setting of ACL injury is not known.Purpose/HypothesisThe purpose of this study was to determine the effect of tear of the lateral meniscal root on stability of the ACL-deficient knee. The hypothesis was that disruption of the lateral meniscal root will further destabilize the ACL-deficient knee during a simulated pivot shift.Study DesignControlled laboratory study.MethodsPivot-shift testing of 8 fresh-frozen cadaveric knees was performed after attachment of photoreflective flags and preparation of CT scans. Each knee was mounted in a custom activity simulator and dynamically loaded from 15° to 90° of flexion with all the permutations of the following: iliotibial band force (50, 75, 100, 125, 150, and 175 N), internal rotation moments (1, 2, and 3 N·m), and valgus moments (5 and 7 N·m). In addition, anterior stability tests were performed by applying a 90-N anterior force to the tibia at flexion angles of 15°, 30°, 45°, 60°, and 90°. During each test, the anterior tibial translation and rotation of the tibia were measured with a high-resolution multiple infrared camera motion analysis system for the following 3 conditions: ACL-intact (ACL-I), ACL-deficient (ACL-D), and ACL-deficient/lateral meniscal posterior root avulsion (ACL-D/LMR-A).ResultsA pivot-shift phenomenon was observed in the ACL-D and ACL-D/LMR-A conditions. The mean tibial translation of the lateral tibial condyle during the pivot-shift maneuver was 2.62 ± 0.53 mm for the ACL-I knees, 6.01 ± 0.51 mm for the ACL-D knees (P value vs. intact: .0005), and 8.13 ± 0.75 mm for the ACL-D/LMR-A knees (P value vs intact: <.0001). During the pivot-shift maneuver, translation was significantly increased in the ACL-D/LMR-A condition compared with the ACL-D condition (P = .0146). Compared with the intact group, anterior tibial translation during the Lachman maneuver also increased at 30° and 90° of flexion in the ACL-D group (P < .0001) and the ACL-D/LM group (P < .0001). No statistically significant difference was found between the ACL-D and ACL-D/LMR-A groups during the Lachman maneuver at 30° and 90° (P = .16 and .72, respectively).ConclusionA tear of the lateral meniscal posterior root further reduces the stability of the ACL-deficient knee during rotational loading.Clinical RelevanceThis study shows that lateral meniscal root injury further destabilizes the ACL-deficient knee and thus advances the concept that the lateral meniscus is a secondary stabilizer of the knee under pivot-shift loading. In the absence of stronger evidence, the study data suggest a rationale for surgical repair of lateral meniscal root tears encountered in the setting of ACL tears.© 2015 The Author(s).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.