• JAMA cardiology · May 2021

    Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram.

    • J Martijn Bos, Zachi I Attia, David E Albert, Peter A Noseworthy, Paul A Friedman, and Michael J Ackerman.
    • Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
    • JAMA Cardiol. 2021 May 1; 6 (5): 532-538.

    ImportanceLong QT syndrome (LQTS) is characterized by prolongation of the QT interval and is associated with an increased risk of sudden cardiac death. However, although QT interval prolongation is the hallmark feature of LQTS, approximately 40% of patients with genetically confirmed LQTS have a normal corrected QT (QTc) at rest. Distinguishing patients with LQTS from those with a normal QTc is important to correctly diagnose disease, implement simple LQTS preventive measures, and initiate prophylactic therapy if necessary.ObjectiveTo determine whether artificial intelligence (AI) using deep neural networks is better than the QTc alone in distinguishing patients with concealed LQTS from those with a normal QTc using a 12-lead electrocardiogram (ECG).Design, Setting, And ParticipantsA diagnostic case-control study was performed using all available 12-lead ECGs from 2059 patients presenting to a specialized genetic heart rhythm clinic. Patients were included if they had a definitive clinical and/or genetic diagnosis of type 1, 2, or 3 LQTS (LQT1, 2, or 3) or were seen because of an initial suspicion for LQTS but were discharged without this diagnosis. A multilayer convolutional neural network was used to classify patients based on a 10-second, 12-lead ECG, AI-enhanced ECG (AI-ECG). The convolutional neural network was trained using 60% of the patients, validated in 10% of the patients, and tested on the remaining patients (30%). The study was conducted from January 1, 1999, to December 31, 2018.Main Outcomes And MeasuresThe goal of the study was to test the ability of the convolutional neural network to distinguish patients with LQTS from those who were evaluated for LQTS but discharged without this diagnosis, especially among patients with genetically confirmed LQTS but a normal QTc value at rest (referred to as genotype positive/phenotype negative LQTS, normal QT interval LQTS, or concealed LQTS).ResultsOf the 2059 patients included, 1180 were men (57%); mean (SD) age at first ECG was 21.6 (15.6) years. All 12-lead ECGs from 967 patients with LQTS and 1092 who were evaluated for LQTS but discharged without this diagnosis were included for AI-ECG analysis. Based on the ECG-derived QTc alone, patients were classified with an area under the curve (AUC) value of 0.824 (95% CI, 0.79-0.858); using AI-ECG, the AUC was 0.900 (95% CI, 0.876-0.925). Furthermore, in the subset of patients who had a normal resting QTc (<450 milliseconds), the QTc alone distinguished those with LQTS from those without LQTS with an AUC of 0.741 (95% CI, 0.689-0.794), whereas the AI-ECG increased this discrimination to an AUC of 0.863 (95% CI, 0.824-0.903). In addition, the AI-ECG was able to distinguish the 3 main genotypic subgroups (LQT1, LQT2, and LQT3) with an AUC of 0.921 (95% CI, 0.890-0.951) for LQT1 compared with LQT2 and 3, 0.944 (95% CI, 0.918-0.970) for LQT2 compared with LQT1 and 3, and 0.863 (95% CI, 0.792-0.934) for LQT3 compared with LQT1 and 2.Conclusions And RelevanceIn this study, the AI-ECG was found to distinguish patients with electrocardiographically concealed LQTS from those discharged without a diagnosis of LQTS and provide a nearly 80% accurate pregenetic test anticipation of LQTS genotype status. This model may aid in the detection of LQTS in patients presenting to an arrhythmia clinic and, with validation, may be the stepping stone to similar tools to be developed for use in the general population.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…