• Plos One · Jan 2012

    Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle.

    • Dominique-Marie Votion, Erich Gnaiger, Hélène Lemieux, Ange Mouithys-Mickalad, and Didier Serteyn.
    • Equine European Centre of Mont-le-Soie, University of Liege, Vielsalm, Belgium. dominique.votion@ulg.ac.be
    • Plos One. 2012 Jan 1; 7 (4): e34890.

    BackgroundWithin the animal kingdom, horses are among the most powerful aerobic athletic mammals. Determination of muscle respiratory capacity and control improves our knowledge of mitochondrial physiology in horses and high aerobic performance in general.Methodology/Principal FindingsWe applied high-resolution respirometry and multiple substrate-uncoupler-inhibitor titration protocols to study mitochondrial physiology in small (1.0-2.5 mg) permeabilized muscle fibres sampled from triceps brachii of healthy horses. Oxidative phosphorylation (OXPHOS) capacity (pmol O(2) • s(-1) • mg(-1) wet weight) with combined Complex I and II (CI+II) substrate supply (malate+glutamate+succinate) increased from 77 ± 18 in overweight horses to 103 ± 18, 122 ± 15, and 129 ± 12 in untrained, trained and competitive horses (N = 3, 8, 16, and 5, respectively). Similar to human muscle mitochondria, equine OXPHOS capacity was limited by the phosphorylation system to 0.85 ± 0.10 (N = 32) of electron transfer capacity, independent of fitness level. In 15 trained horses, OXPHOS capacity increased from 119 ± 12 to 134 ± 37 when pyruvate was included in the CI+II substrate cocktail. Relative to this maximum OXPHOS capacity, Complex I (CI)-linked OXPHOS capacities were only 50% with glutamate+malate, 64% with pyruvate+malate, and 68% with pyruvate+malate+glutamate, and ~78% with CII-linked succinate+rotenone. OXPHOS capacity with glutamate+malate increased with fitness relative to CI+II-supported ETS capacity from a flux control ratio of 0.38 to 0.40, 0.41 and 0.46 in overweight to competitive horses, whereas the CII/CI+II substrate control ratio remained constant at 0.70. Therefore, the apparent deficit of the CI- over CII-linked pathway capacity was reduced with physical fitness.Conclusions/SignificanceThe scope of mitochondrial density-dependent OXPHOS capacity and the density-independent (qualitative) increase of CI-linked respiratory capacity with increased fitness open up new perspectives of integrative and comparative mitochondrial respiratory physiology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…