-
IEEE Trans Biomed Eng · Nov 2011
Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
- Jiang Zhang, Xianguo Tuo, Zhen Yuan, Wei Liao, and Huafu Chen.
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China. zhangjiang_@hotmail.com
- IEEE Trans Biomed Eng. 2011 Nov 1; 58 (11): 3184-96.
AbstractClustering analysis is a promising data-driven method for analyzing functional magnetic resonance imaging (fMRI) time series data. The huge computational load, however, creates practical difficulties for this technique. We present a novel approach, integrating principal component analysis (PCA) and supervised affinity propagation clustering (SAPC). In this method, fMRI data are initially processed by PCA to obtain a preliminary image of brain activation. SAPC is then used to detect different brain functional activation patterns. We used a supervised Silhouette index to optimize clustering quality and automatically search for the optimal parameter p in SAPC, so that the basic affinity propagation clustering is improved by applying SAPC. Four simulation studies and tests with three in vivo fMRI datasets containing data from both block-design and event-related experiments revealed that functional brain activation was effectively detected and different response patterns were distinguished using our integrated method. In addition, the improved SAPC method was superior to the k -centers clustering and hierarchical clustering methods in both block-design and event-related fMRI data, as measured by the average squared error. These results suggest that our proposed novel integrated approach will be useful for detecting brain functional activation in both block-design and event-related experimental fMRI data.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.