• Int. J. Radiat. Oncol. Biol. Phys. · Mar 2007

    Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning.

    • Robert Hong, James Halama, Davide Bova, Anil Sethi, and Bahman Emami.
    • Department of Radiation Oncology, Nuclear Medicine Division, Loyola University Medical Center, Maywood, IL 60153, USA.
    • Int. J. Radiat. Oncol. Biol. Phys. 2007 Mar 1; 67 (3): 720-6.

    PurposeTo develop standardized correlates of [18F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) standard uptake value (SUV) to computed tomography (CT)-based window and levels.Methods And MaterialsNineteen patients with non-small-cell lung cancer who underwent imaging with positron emission tomography (PET) and CT were selected. A method of standardizing SUV within CT planning software was developed. A scale factor, determined by a sensitivity calibration of the PET scanner, converts voxel counts to activity per gram in tissue, allowing SUVs to be correlated to CT window and levels. A method of limiting interobserver variations was devised to enhance "edges" of regions of interest based on SUV thresholds. The difference in gross tumor volumes (GTVs) based on CT, PET SUV >or= 2.5, and regions of 40% maximum SUV were analyzed.ResultsThe mean SUV was 9.3. Mean GTV volumes were 253 cc for CT, 221 cc for SUV >or= 2.5, and 97 cc for SUV40%Max. Average volume difference was -259% between >or=2.5 SUV and CT and -162% between SUV40%Max and CT. Percent difference between GTV >or= 2.5 SUV and SUV40%Max remained constant beyond SUV > 7. For SUVs 4-6, best correlation among SUV thresholds occurred at volumes near 90 cc. Mean percent change from GTVs contoured according to CT (GTV CT) was -260% for GTV2.5 and -162% for GTV40%Max. Using the SUV40%Max threshold resulted in a significant alteration of volume in 98% of patients, while the SUV2.5 threshold resulted in an alteration of volume in 58% of patients.ConclusionsOur method of correlating SUV to W/L thresholds permits accurate displaying of SUV in coregistered PET/CT studies. The optimal SUV thresholds to contour GTV depend on maximum tumor SUV and volume. Best correlation occurs with SUVs >6 and small volumes <100 cc. At SUVs >7, differences between the SUV threshold filters remain constant. Because of variability in volumes obtained by using SUV40%Max, we recommend using SUV >or= 2.5 for radiotherapy planning in non-small-cell lung cancer.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.