• Cochrane Db Syst Rev · Feb 2019

    Meta Analysis

    Ureteral stent versus no ureteral stent for ureteroscopy in the management of renal and ureteral calculi.

    • Maria Ordonez, Eu Chang Hwang, Michael Borofsky, Caitlin J Bakker, Shreyas Gandhi, and Philipp Dahm.
    • Department of Urology, University of Minnesota, 420 Delaware Street SE, MMC 394, Minneapolis, Minnesota, USA.
    • Cochrane Db Syst Rev. 2019 Feb 6; 2 (2): CD012703CD012703.

    BackgroundUreteroscopy combined with laser stone fragmentation and basketing is a common approach for managing renal and ureteral stones. This procedure is associated with some degree of ureteral trauma. Ureteral trauma may lead to swelling, ureteral obstruction, and flank pain and may require subsequent interventions such as hospital admission or secondary ureteral stent placement. To prevent such issues, urologists often place temporary ureteral stents prophylactically, but the value of doing so remains unclear.ObjectivesTo assess the effects of postoperative ureteral stent placement after uncomplicated ureteroscopy.Search MethodsWe performed a comprehensive search using multiple databases (the Cochrane Library, MEDLINE, Embase, Scopus, Google Scholar, and Web of Science), trials registries, other sources of grey literature, and conference proceedings, up to 01 February 2019. We applied no restrictions on publication language or status.Selection CriteriaWe included trials in which researchers randomised participants undergoing uncomplicated ureteroscopy to placement of a ureteral stent versus no ureteral stent.Data Collection And AnalysisTwo review authors independently classified studies and abstracted data from the included studies. We performed statistical analyses using a random-effects model. We rated the certainty of evidence (CoE) according to the GRADE approach.Main ResultsPrimary outcomesStenting may slightly reduce the number of unplanned return visits (16 trials with 1970 participants; very low CoE), but we are very uncertain of this finding.Pain on the day of surgery as measured on a visual analogue scale (scale 0 to 10; higher values reflect more pain) is probably similar (mean difference (MD) 0.32 higher, 95% confidence interval (CI) 0.13 lower to 0.78 higher; 4 trials with 346 participants; moderate CoE). Pain on postoperative days 1 to 3 may show little to no difference (standardised mean difference (SMD) 0.25 higher, 95% CI 0.32 lower to 0.82 higher; 8 trials with 683 participants; low CoE). On postoperative days 4 to 30, stented participants may experience more pain (8 trials with 903 participants; very low CoE), but we are very uncertain of this finding.Stenting may result in little to no difference in the need for secondary interventions (risk ratio (RR) 1.15, 95% CI 0.39 to 3.33; 10 studies with 1435 participants; low CoE); this corresponds to three more interventions per 1000 participants (95% CI 13 fewer to 48 more).Secondary outcomesStenting may reduce the need for narcotics (7 trials with 830 participants; very low CoE), but we are very uncertain of this finding.Rates of urinary tract infection (UTI) up to 90 days are probably not substantially different (RR 0.94, 95% CI 0.59 to 1.51; 10 trials with 1207 participants; moderate CoE); this corresponds to three fewer infections per 1000 participants (95% CI 23 fewer to 29 more).Ureteral stricture rates up to 90 days may be slightly reduced (14 trials with 1625 participants; very low CoE), but we are very uncertain of this finding.Rates of hospital admission may be slightly reduced (RR 0.70, 95% CI 0.32 to 1.55; 13 studies with 1647 participants; low CoE). This corresponds to 15 fewer admissions per 1000 participants (95% CI 33 fewer to 27 more).Authors' ConclusionsFindings of this review illustrate the trade-offs of risks and benefits faced by urologists and their patients when it comes to decision-making about stent placement after uncomplicated ureteroscopy for stone disease. We noted that both desirable and undesirable effects were small in absolute terms, with findings based mostly on low and very low CoE. The main issues reducing our confidence in research findings were study limitations (mostly risk of performance and detection bias) and imprecision. We were unable to conduct any of the preplanned subgroup analyses, in particular those based on stone size, stone location, and use of ureteral dilation, which may be important effect modifiers. Given the importance of this question, higher-quality and sufficiently large trials are needed to better inform decision-making.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.