• Am J Sports Med · Aug 2016

    Harmful Effects of Leukocyte-Rich Platelet-Rich Plasma on Rabbit Tendon Stem Cells In Vitro.

    • Lei Zhang, Shuo Chen, Peng Chang, Nirong Bao, Chao Yang, Yufan Ti, Liwu Zhou, and Jianning Zhao.
    • Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
    • Am J Sports Med. 2016 Aug 1; 44 (8): 1941-51.

    BackgroundPlatelet-rich plasma (PRP) is now widely used as a promising treatment for patients with tendinopathy. However, the efficacy of PRP treatment for tendinopathy is controversial mainly because of inconsistent results from human clinical trials and particularly because the concentration and effect of leukocytes in PRP remain largely unknown.HypothesisLeukocyte-rich PRP (L-PRP) inhibits growth factor release, decreases proliferation, and induces nontenocyte differentiation of tendon stem cells (TSCs); increases catabolic cytokine concentrations; and causes inflammation and apoptosis. Thus, L-PRP has a detrimental effect on tendon stem/progenitor cells, which impairs injured tendon healing.Study DesignControlled laboratory study.MethodsPure PRP (P-PRP) and L-PRP were prepared from the same individual rabbit blood, and platelet numbers in each PRP product were adjusted to reach the same level. The leukocyte level in L-PRP was 4 and 8 times higher than those in whole blood and P-PRP, respectively. The growth factors in both P-PRP and L-PRP were measured by enzyme-linked immunosorbent assay kits. The morphology, stemness, proliferation, and differentiation of TSCs grown in L-PRP and P-PRP were examined by microscopy, immunocytochemistry, population doubling time, quantitative real-time polymerase chain reaction, and histological analysis.ResultsL-PRP produced lower levels of growth factors, such as vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), transforming growth factor (TGF)-β1, and platelet-derived growth factor (PDGF), than did P-PRP. TSC proliferation was significantly decreased in L-PRP in a concentration-dependent manner. Furthermore, TSCs cultured in P-PRP produced more collagen and formed tendon-like tissue; however, TSCs grown in L-PRP differentiated into nontenocytes and produced more inflammatory factors such as membrane-associated prostaglandin synthase (mPGES) and interleukin (IL)-1β. Moreover, L-PRP was associated with increased apoptosis.ConclusionL-PRP has harmful effects on TSCs.Clinical RelevanceThis study revealed the direct effects of different compositions of PRP on TSCs and provided basic scientific data to help understand the cellular and molecular mechanisms of the efficacy of PRP treatment in clinical use.© 2016 The Author(s).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.