-
Microvascular research · Mar 2012
Macrophage migration inhibitory factor contributes to hypoxic pulmonary vasoconstriction in rats.
- Bo Zhang, Ying Luo, Man-Ling Liu, Jing Wang, Dun-Quan Xu, Ming-Qing Dong, Yi Liu, Min Xu, Hai-Ying Dong, Peng-Tao Zhao, Yu-Qi Gao, and Zhi-Chao Li.
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
- Microvasc. Res. 2012 Mar 1; 83 (2): 205-12.
BackgroundHypoxic pulmonary vasoconstriction may lead to pulmonary hypertension, but the underlying mechanisms of persistent vasoconstriction are still unclear. There is evidence that pulmonary inflammation contributes to the abnormalities of function in the pulmonary artery (PA) following chronic hypoxia exposure. Macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine, and we found that expression of MIF was increased in the smooth muscle of PA from hypoxic pulmonary hypertensive rats. Therefore, the aim of the study was to investigate the role of MIF in modulating vasoreactivity of isolated PA rings.MethodsSprague-Dawley rats were challenged by intermittent chronic hypoxia exposure for 4 weeks to establish hypoxic pulmonary hypertension models. Subsequently, immunohistochemistry and western blot assay were used to examine the MIF expression in pulmonary artery. Moreover, isometric force displacement was measured in isolated intrapulmonary artery.ResultsIn the isolated PA, our results showed that MIF mediated the enhanced pulmonary arterial vasoconstriction in response to chronic hypoxia, and the delayed hypoxic constriction in a biphasic pattern of constriction occurs in response to acute hypoxia. We also present the finding that MIF had no effect on force on its own, but concentration-dependently potentiated constrictions pre-evoked by phenylephrine under normoxic condition. The potentiation was independent of the endothelium. MIF-induced potentiation of phenylephrine-evoked constriction was partially inhibited by PKC inhibitor chelerythrine, p38 inhibitor SB 203580, ERK1/2 inhibitor U0126, respectively.ConclusionsOur results suggested that MIF enhanced vasoconstriction of pulmonary artery elicited by agonist through PKC, p38 and ERK1/2 signal pathways, which may contributes to hypoxic pulmonary vasoconstriction.Copyright © 2011 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.