• Eur. J. Pharmacol. · Aug 2003

    Comparative Study

    Effects of adenosine receptor antagonists on pial arteriolar dilation during carbon dioxide inhalation.

    • John W Phillis and Michael H O'Regan.
    • Department of Physiology, School of Medicine, Wayne State University, 5374 Scott Hall, 540 East Canfield, Detroit MI 4801, USA. jphillis@med.wayne.edu
    • Eur. J. Pharmacol. 2003 Aug 29; 476 (3): 211-9.

    AbstractThe role of adenosine in the cerebrovascular response to carbon dioxide inhalation was evaluated in two sets of experiments. The pial circulation was recorded by a Laser-Doppler flow probe placed over a closed cranial window in methoxyflurane anesthetized rats. Topical application of the nonselective adenosine receptor antagonist caffeine (1 mM), the selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX,1 microM), or the selective A2A receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a]triazin-5-yl amino]ethyl) phenol (ZM 241385, 1 microM) all failed to affect mean arterial blood pressure, basal cerebral blood flow, or the carbon dioxide-evoked hyperemia. Systemically administered caffeine (20 mg/kg) also had no significant effects. However, following the systemic administration of the nonselective nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg), the topical application of both caffeine and ZM 241385 (but not DPCPX) significantly reduced the carbon dioxide-evoked hyperemia. L-NAME (20 mg/kg) administered intravenously, evoked a significant increase in mean arterial blood pressure, a slow progressive decline in cerebral blood flow and, during brief (60-90 s) periods of 7.5% carbon dioxide inhalation, a significant decrease in arterial blood pressure. L-NAME failed to reduce the carbon dioxide-evoked increase in cerebral blood flow as measured by the area under the curve (AUC), although it did reduce the peak flow response. Topically applied L-NAME (1 mM) failed to alter mean arterial blood pressure, basal cerebral blood flow, or the carbon dioxide-evoked increases in cerebral blood flow. In a second series of experiments, we evaluated the ability of 10% carbon dioxide inhalation for 8 min to elicit a release of adenosine from the cerebral cortex. Adenosine levels in the cortical superfusates rose significantly during periods of carbon dioxide inhalation. The data suggest that following the removal of the confounding effects of nitric oxide, which are unlikely to be mediated locally, a significant contribution by adenosine A2A receptor activation to the carbon dioxide-evoked cortical hyperemia was evident.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.