-
Multicenter Study
Association of CETP Gene Variants With Risk for Vascular and Nonvascular Diseases Among Chinese Adults.
- Iona Y Millwood, Derrick A Bennett, Michael V Holmes, Ruth Boxall, Yu Guo, Zheng Bian, Ling Yang, Sam Sansome, Yiping Chen, Huaidong Du, Canqing Yu, Alex Hacker, Dermot F Reilly, Yunlong Tan, Michael R Hill, Junshi Chen, Richard Peto, Hongbing Shen, Rory Collins, Robert Clarke, Liming Li, Robin G Walters, Zhengming Chen, and China Kadoorie Biobank Collaborative Group.
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, England.
- JAMA Cardiol. 2018 Jan 1; 3 (1): 34-43.
ImportanceIncreasing levels of high-density lipoprotein (HDL) cholesterol through pharmacologic inhibition of cholesteryl ester transfer protein (CETP) is a potentially important strategy for prevention and treatment of cardiovascular disease (CVD).ObjectiveTo use genetic variants in the CETP gene to assess potential risks and benefits of lifelong lower CETP activity on CVD and other outcomes.Design, Setting, And ParticipantsThis prospective biobank study included 151 217 individuals aged 30 to 79 years who were enrolled from 5 urban and 5 rural areas of China from June 25, 2004, through July 15, 2008. All participants had baseline genotype data, 17 854 of whom had lipid measurements and 4657 of whom had lipoprotein particle measurements. Median follow-up of 9.2 years (interquartile range, 8.2-10.1 years) was completed January 1, 2016, through linkage to health insurance records and death and disease registries.ExposuresFive CETP variants, including an East Asian loss-of-function variant (rs2303790), combined in a genetic score weighted to associations with HDL cholesterol levels.Main Outcomes And MeasuresBaseline levels of lipids and lipoprotein particles, cardiovascular risk factors, incidence of carotid plaque and predefined major vascular and nonvascular diseases, and a phenome-wide range of diseases.ResultsAmong the 151 217 individuals included in this study (58.4% women and 41.6% men), the mean (SD) age was 52.3 (10.9) years. Overall, the mean (SD) low-density lipoprotein (LDL) cholesterol level was 91 (27) mg/dL; HDL cholesterol level, 48 (12) mg/dL. CETP variants were strongly associated with higher concentrations of HDL cholesterol (eg, 6.1 [SE, 0.4] mg/dL per rs2303790-G allele; P = 9.4 × 10-47) but were not associated with lower LDL cholesterol levels. Within HDL particles, cholesterol esters were increased and triglycerides reduced, whereas within very low-density lipoprotein particles, cholesterol esters were reduced and triglycerides increased. When scaled to 10-mg/dL higher levels of HDL cholesterol, the CETP genetic score was not associated with occlusive CVD (18 550 events; odds ratio [OR], 0.98; 95% CI, 0.91-1.06), major coronary events (5767 events; OR, 1.08; 95% CI, 0.95-1.22), myocardial infarction (3118 events; OR, 1.14; 95% CI, 0.97-1.35), ischemic stroke (13 759 events; OR, 0.94; 95% CI, 0.86-1.02), intracerebral hemorrhage (6532 events; OR, 0.94; 95% CI, 0.83-1.06), or other vascular diseases or carotid plaque. Similarly, rs2303790 was not associated with any vascular diseases or plaque. No associations with nonvascular diseases were found other than an increased risk for eye diseases with rs2303790 (4090 events; OR, 1.43; 95% CI, 1.13-1.80; P = .003).Conclusions And RelevanceCETP variants were associated with altered HDL metabolism but did not lower LDL cholesterol levels and had no significant association with risk for CVD. These results suggest that in the absence of reduced LDL cholesterol levels, increasing HDL cholesterol levels by inhibition of CETP may not confer significant benefits for CVD.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.