• Bmc Med Res Methodol · Feb 2013

    Ascertaining invasive breast cancer cases; the validity of administrative and self-reported data sources in Australia.

    • Anna Kemp, David B Preen, Christobel Saunders, C D'Arcy J Holman, Max Bulsara, Kris Rogers, and Elizabeth E Roughead.
    • Centre for Health Services Research, School of Population Health, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia. anna.kemp@uwa.edu.au
    • Bmc Med Res Methodol. 2013 Feb 11; 13: 17.

    BackgroundStatutory State-based cancer registries are considered the 'gold standard' for researchers identifying cancer cases in Australia, but research using self-report or administrative health datasets (e.g. hospital records) may not have linkage to a Cancer Registry and need to identify cases. This study investigated the validity of administrative and self-reported data compared with records in a State-wide Cancer Registry in identifying invasive breast cancer cases.MethodsCases of invasive breast cancer recorded on the New South Wales (NSW) Cancer Registry between July 2004 and December 2008 (the study period) were identified for women in the 45 and Up Study. Registry cases were separately compared with suspected cases ascertained from: i) administrative hospital separations records; ii) outpatient medical service claims; iii) prescription medicines claims; and iv) the 45 and Up Study baseline survey. Ascertainment flags included diagnosis codes, surgeries (e.g. lumpectomy), services (e.g. radiotherapy), and medicines used for breast cancer, as well as self-reported diagnosis. Positive predictive value (PPV), sensitivity and specificity were calculated for flags within individual datasets, and for combinations of flags across multiple datasets.ResultsOf 143,010 women in the 45 and Up Study, 2039 (1.4%) had an invasive breast tumour recorded on the NSW Cancer Registry during the study period. All of the breast cancer flags examined had high specificity (>97.5%). Of the flags from individual datasets, hospital-derived 'lumpectomy and diagnosis of invasive breast cancer' and '(lumpectomy or mastectomy) and diagnosis of invasive breast cancer' had the greatest PPV (89% and 88%, respectively); the later having greater sensitivity (59% and 82%, respectively). The flag with the highest sensitivity and PPV ≥ 85% was 'diagnosis of invasive breast cancer' (both 86%). Self-reported breast cancer diagnosis had a PPV of 50% and sensitivity of 85%, and breast radiotherapy had a PPV of 73% and a sensitivity of 58% compared with Cancer Registry records. The combination of flags with the greatest PPV and sensitivity was '(lumpectomy or mastectomy) and (diagnosis of invasive breast cancer or breast radiotherapy)' (PPV and sensitivity 83%).ConclusionsIn the absence of Cancer Registry data, administrative and self-reported data can be used to accurately identify cases of invasive breast cancer for sample identification, removing cases from a sample, or risk adjustment. Invasive breast cancer can be accurately identified using hospital-derived diagnosis alone or in combination with surgeries and breast radiotherapy.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.