-
- Michael D deB Edwardes.
- Everest Clinical Research, Markham, ON, Canada, LR3 0B8.
- Res Synth Methods. 2014 Dec 1; 5 (4): 313-21.
AbstractConventional meta-analysis estimators are weighted means of study measures, meant to estimate an overall population measure. For measures such as means, mean differences and risk differences, a weighted arithmetic mean is the conventional estimator. When the measures are ratios, such as odds ratios, logarithms of the study measures are most frequently used, and the back-transform is a weighted geometric mean, rather than the arithmetic mean. For numbers needed to treat, a weighted harmonic mean is the back-transform. The Theorem of the Means effectively states that unless all of the studies have an equal result, the arithmetic mean must be greater than the geometric mean, which must be greater than the harmonic mean. When the weights are fixed sampling weights, the inequalities are in the expected direction. However, when the weights are the usual reciprocal variance estimates, the inequalities go in the opposite direction. The use of reciprocal variance weights is therefore questioned as perhaps having a fundamental flaw. An example is shown of a meta-analysis of frequencies of two classes of drug-resistant HIV-1 mutations.Copyright © 2014 John Wiley & Sons, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.