• Int. J. Radiat. Oncol. Biol. Phys. · Mar 2004

    Comparative Study

    Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non-small-cell lung cancer.

    • Hasan Murshed, H Helen Liu, Zhongxing Liao, Jerry L Barker, Xiaochun Wang, Susan L Tucker, Anurag Chandra, Thomas Guerrero, Craig Stevens, Joe Y Chang, Melinda Jeter, James D Cox, Ritsuko Komaki, Radhe Mohan, and Joe Y Change.
    • Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
    • Int. J. Radiat. Oncol. Biol. Phys. 2004 Mar 15; 58 (4): 1258-67.

    PurposeTo investigate dosimetric improvements with respect to tumor-dose conformity and normal tissue sparing using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) for advanced-stage non-small-cell lung cancer (NSCLC).Methods And MaterialsForty-one patients with Stage III-IV and recurrent NSCLC who previously underwent 3D-CRT were included. IMRT plans were designed to deliver 63 Gy to 95% of the planning target volume using nine equidistant coplanar 6-MV beams. Inverse planning was performed to minimize the volumes of normal lung, heart, esophagus, and spinal cord irradiated above their tolerance doses. Dose distributions and dosimetric indexes for the tumors and critical structures in both plans were computed and compared.ResultsUsing IMRT, the median absolute reduction in the percentage of lung volume irradiated to >10 and >20 Gy was 7% and 10%, respectively. This corresponded to a decrease of >2 Gy in the total lung mean dose and of 10% in the risk of radiation pneumonitis. The volumes of the heart and esophagus irradiated to >40-50 Gy and normal thoracic tissue volume irradiated to >10-40 Gy were reduced using the IMRT plans. A marginal increase occurred in the spinal cord maximal dose and lung volume >5 Gy in the IMRT plans, which could be have resulted from the significant increase in monitor units and thus leakage dose in IMRT.ConclusionIMRT planning significantly improved target coverage and reduced the volume of normal lung irradiated above low doses. The spread of low doses to normal tissues can be controlled in IMRT with appropriately selected planning parameters. The dosimetric benefits of IMRT for advanced-stage non-small-cell lung cancer must be evaluated further in clinical trials.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.