• IEEE Trans Med Imaging · Sep 2005

    Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network.

    • Kenji Suzuki, Feng Li, Shusuke Sone, and Kunio Doi.
    • Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA. suzuki@uchicago.edu
    • IEEE Trans Med Imaging. 2005 Sep 1; 24 (9): 1138-50.

    AbstractLow-dose helical computed tomography (LDCT) is being applied as a modality for lung cancer screening. It may be difficult, however, for radiologists to distinguish malignant from benign nodules in LDCT. Our purpose in this study was to develop a computer-aided diagnostic (CAD) scheme for distinction between benign and malignant nodules in LDCT scans by use of a massive training artificial neural network (MTANN). The MTANN is a trainable, highly nonlinear filter based on an artificial neural network. To distinguish malignant nodules from six different types of benign nodules, we developed multiple MTANNs (multi-MTANN) consisting of six expert MTANNs that are arranged in parallel. Each of the MTANNs was trained by use of input CT images and teaching images containing the estimate of the distribution for the "likelihood of being a malignant nodule," i.e., the teaching image for a malignant nodule contains a two-dimensional Gaussian distribution and that for a benign nodule contains zero. Each MTANN was trained independently with ten typical malignant nodules and ten benign nodules from each of the six types. The outputs of the six MTANNs were combined by use of an integration ANN such that the six types of benign nodules could be distinguished from malignant nodules. After training of the integration ANN, our scheme provided a value related to the "likelihood of malignancy" of a nodule, i.e., a higher value indicates a malignant nodule, and a lower value indicates a benign nodule. Our database consisted of 76 primary lung cancers in 73 patients and 413 benign nodules in 342 patients, which were obtained from a lung cancer screening program on 7847 screenees with LDCT for three years in Nagano, Japan. The performance of our scheme for distinction between benign and malignant nodules was evaluated by use of receiver operating characteristic (ROC) analysis. Our scheme achieved an Az (area under the ROC curve) value of 0.882 in a round-robin test. Our scheme correctly identified 100% (76/76) of malignant nodules as malignant, whereas 48% (200/413) of benign nodules were identified correctly as benign. Therefore, our scheme may be useful in assisting radiologists in the diagnosis of lung nodules in LDCT.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.