-
J Comput Assist Tomogr · May 2016
Controlled Clinical TrialFeasibility of Dual Flip Angle-Based Fast 3-Dimensional T1 Mapping for Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage of the Knee: A Histologically Controlled Study.
- Min Zong, Chao Yan, Lin Lu, Hai-Bin Shi, and Rong-Bin Yu.
- From the *Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; †Department of Radiology, Columbia University Medical Center, New York, NY; ‡Department of Orthopedics Surgery, Nanjing First Hospital Affiliated to Nanjing Medical University; and §Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.
- J Comput Assist Tomogr. 2016 May 1; 40 (3): 442-6.
ObjectiveThe aim of the study was to validate dual-flip angle-based fast 3-dimensional (3D) T1 mapping for delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) by means of histological analyses in the assessment of the cartilage of the knee in a porcine model.MethodsA total of 15 mini pigs were included in this study. The left knee anterior cruciate ligaments of all mini pigs were transected. The mini pigs were divided into 3 groups postoperatively, with 5 pigs randomly assigned to 1 group. Dual-flip angle-based fast T1 mapping for dGEMRIC was obtained in the sagittal planes at 0 week (group 1), 3 weeks (group 2), and 6 weeks (group 3) after operation, using an 8-channel knee coil. Magnetic resonance imaging was performed at 3T with dual-flip angle-based fast 3D T1 mapping sequence for morphological cartilage assessment of dGEMRIC T1 values. After MRI analysis, histological and biochemical composition (water, collagen, and glycosaminoglycan [GAG]) of the knee cartilage in the medial femoral condyle was quantified ex vivo.ResultsThe T1 values obtained by the dual-flip angle-based fast 3D T1 mapping were positively correlated with the glycosaminoglycan content (r = 0.85; P < 0.05). The values had no significant correlation with the collagen content. The dGEMRIC-T1 values obtained by this method showed the medial femoral condyle cartilage in the anterior cruciate ligament-transected knee after transection decreased with time (P < 0.05). Histological sections of cartilage damage were correlated with MRI data.ConclusionsThis study demonstrated the reliability of using dual-flip angle-based fast T1 mapping for dGEMRIC for the biochemical assessment of early cartilage degeneration. This technique is a powerful tool for researchers and clinicians to acquire sufficient resolution data within a reasonable scan time.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.